

2752 Capitol Drive Suite #103
Sun Prairie, WI 53590

2150080 2G Actuator Packets - Rotary & Linear Revision AR Date 3/16/2022

2G Actuator Communications Protocol
Document – Rotary & Linear Actuators

DOCUMENT NO. 2150080

Rev. AR

Date: 3-16-2022

Prepared by:

2G Engineering
2752 Capitol Drive Suite #103

Sun Prairie WI, 53590

2

REVISION HISTORY

REV DATE Editor DESCRIPTION

- 6-29-2015 JL Initial Release

A 8-12-2015 JL Updated Scaled Position; Failsafe mode packets

B 8-13-2015 JL Updated system status/info and motor control packets

C 8-17-2015 JL
Updated byte counts and byte numbering on several
packets

D 9-2-2015 JL
Updated documentation on Version packet and System
Configuration packets

E 9-28-2015 AT
Incorporated new template for packet specifications.
Updated System Configuration packets.

F 9-30-2015 JL
Updated Position Setpoint at Fixed Velocity, Scaled
Position Setpoint, and System Configuration Packets.

G 10-1-2015 JL
Added information about ASCII packet protocol,
updated port activation section.

H 10-1-2015 JL Added Version and Build Info packets.

I 10-9-2015 JL
Updated data type information, added note to system
info packet, added note to velocity packet, updated
index.

J 11-3-2015 JL
Added motion profile configuration packet. Updated ‘K’
packet.

K 11-10-2015 JL
Added position update packet. Updated ‘<’ packet.
Added note on CRC.

L 11-12-2015 JL Updated position update packet.

M 12-31-2015 JL

Updated Basic Packet Behavior section. Added note on
analog control to RS-485 and RS-232 Port Activation
section. Updated Motion Profile Config packet. Added
Motion Profile Status packet. Updated Firmware Build
Info packet.

N 1-25-2016 JL
Updated Failsafe Config packet with copy to global
config. Added EEPROM status bit to faults packet.

O 1-29-2016 JL
Updated bits in fault packet. Added current offset
packet.

P 2-2-2016 JL
Added Load Dump Configuration packet. Added Stall
Detection Configuration packet.

Q 3-3-2016 JL Updated Calibrate / Configure Position Packet ‘C’.

3

Updated Fault behavior packet ‘O’. Updated Motion
Profile Configuration – Linear units.

R 4-6-2016 JL
Updated Load Dump Packet, Absolute Position, Failsafe,
Failsafe time remaining, hardware brake configuration
packets.

S 5-13-2016 JL Added Gain Scheduling Packet.

T 5-16-2016 JL Corrected Rotary - System Info Packet

U 6-16-2016 JL

Corrected error in Rotary - System Info Packet. Updated
Stall Detection Configuration Packet. Updated Fault
Information Packet. Updated Fault History Information
Packet.

V 7-20-2016 JL
Added additional information to Basic Packet Behavior
section and RS485 Termination Configuration Packet.

W 8-18-2016 JL Updated load dump packet.

X 10-6-2016 JL
Added raw position packets and linearization
configuration packets.

Y 11-9-2016 JL Updated position linearization configuration packet.

Z 12-13-2016 JL
Corrected position units on Absolute Setpoint Packet ‘S’

Added Auto-Info Configuration Packet.

AA 1-24-2017 JL
Added persistent revolution counting configuration
packet. Updated clear offsets packet and update
position packet.

AB 4-12-2017 JL
Updated units on Rotary System Configuration 2 Packet
‘D’

AC 4-24-2017 JL
Added PID Feed Forward configuration to System
Configuration 3 packet.

AD 6-8-2017 JL
Updated Linear Actuator Position Sampling
Configuration Packet.

AE 2-2-2018 JL
Added Velocity Setpoint Extended Packet. Corrected
size of Current Limit Configuration Packet.

AF 2-15-2018 JL Added note on HPU operation.

AG 2-26-2018 JL
Added documentation for stall detection on linear
actuators

AH 3-7-2018 JL
Corrected field ordering and labeling on system
configuration 1 and 2 packets

AI 4-25-2018 JL
Corrected model identifier table in acknowledge packet.
Added actuator name, CAN configuration, and CAN
status packets.

4

AJ 5-9-2018 JL
Added reserved fields to Overvoltage Protection and
Endpoint packets

AK 4-19-2019 JL

Corrected byte numbering and field descriptions in
System Configuration 2 sections. Added Valve Control
packet. Added note about Velocity Setpoint Extended
packet to Velocity Setpoint packet.

AL 8-27-2019 JL Corrected set/request bytes for valve control packet.

AM 11-5-2020 JL Corrected firmware version packet.

AN 12-22-2020 JL
Corrected packet length for motion profile configuration
packet 0x9A

AO 9-8-2021 JL
Added Modbus passthrough packet. Added new
actuator types to the acknowledge packet. Fixed some
formatting issues.

AP 11-04-2021 JL

Fixed reference to motor velocity in packet lookup table.
Updated description for the derivative clamp value in
system configuration 1 and system configuration 2
packets. Updated packet type hex value for fault
packet. Updated description of motor current limit on
current limits configuration packet. Added new fault
bits to fault packet. Added Ethernet configuration and
status packets.

AQ 11-5-2021 JL Added new fault bits to fault history packet.

AR 3-16-2021 JL
Added new “brake with deadband” mode to System
Configuration 2 and Position Setpoint at Fixed Velocity
Extended packets.

5

1 Contents

2 Servo System Overview ... 9

3 Packet Format Overview ... 10

3.1 Standard (Non-Addressed) Packets .. 10

3.2 Addressed Packets .. 10

3.3 ASCII Packets .. 10

4 Basic Packet Behavior .. 12

5 RS-485 and RS-232 Port Activation .. 12

6 Data Types... 12

7 Units .. 13

7.1 Linear Actuators ... 13

7.2 Rotary Actuators .. 13

8 Storage of Configuration Parameters .. 13

9 System Settings ... 13

10 Actuator Movement Methods ... 14

11 HPU Operation .. 14

12 System Parameter and Packet Lookup Table ... 15

13 Packet Specifications ... 19

14 Configuration Packets ... 19

14.1 Linear Actuators - Absolute Position Setpoint Packet ‘S’ .. 19

14.2 Rotary Actuators - Absolute Position Setpoint Packet ‘S’ ... 20

14.3 Baud Rate Configuration Packet ‘B’ ... 21

14.4 Communication Address Configuration Packet ‘Y’ ... 22

14.5 Current Limits Configuration Packet ‘I’ .. 23

14.6 Linear Actuators - Failsafe Configuration Packet 0x92 .. 24

14.7 Rotary Actuators - Failsafe Configuration Packet 0x92 .. 26

14.8 Fault Behavior Configuration Packet ‘O’ .. 28

14.9 Hardware Brake Configuration Packet 0x86 .. 29

14.10 Motor Control Configuration Packet ‘X’ ... 30

14.11 Overvoltage Protection Configuration Packet 0x82 ... 32

14.12 Linear Actuators - Position Sampling Configuration Packet ‘E’ .. 33

6

14.13 Rotary Actuators - Position Sampling Configuration Packet ‘E’ ... 35

14.14 Linear Actuators - Position Setpoint at Fixed Velocity Configuration Packet ‘U’ 37

14.15 Rotary Actuators - Position Setpoint at Fixed Velocity Configuration Packet ‘U’................................... 38

14.16 Linear Actuators - Position Setpoint at Fixed Velocity Extended Configuration Packet ‘K’ 39

14.17 Rotary Actuators - Position Setpoint at Fixed Velocity Extended Configuration Packet ‘K’ 41

14.18 Linear Actuators – Relative Position Setpoint Packet ‘R’ ... 43

14.19 Linear Actuators - Relative Zero Position Configuration Packet ‘Z’ .. 44

14.20 RS485 Termination Configuration Packet 0x84 (Actuators equipped with RS485 Only)........................ 45

14.21 Scaled Position Setpoint Configuration Packet 0x88 (Actuators equipped with position scaling only) . 46

14.22 Linear Actuators - System Configuration 1 Packet ‘M’ .. 47

14.23 Rotary Actuators - System Configuration 1 Packet ‘M’ .. 49

14.24 Linear Actuators - System Configuration 2 Packet ‘D’ ... 51

14.25 Rotary Actuators - System Configuration 2 Packet ‘D’ ... 54

14.26 Linear Actuators – System Configuration 3 Packet 0xA6 ... 57

14.27 Rotary Actuators – System Configuration 3 Packet 0xA6 .. 59

14.28 Valve Endpoints Configuration Packet 0x80 (Ball Valve Actuators Only) .. 61

14.29 Linear Actuators – Velocity Setpoint Configuration Packet ‘W’ ... 62

14.30 Rotary Actuators – Velocity Setpoint Configuration Packet ‘W’ .. 63

14.31 Linear Actuators – Velocity Setpoint Extended Configuration Packet 0xB6 ... 64

14.32 Rotary Actuators – Velocity Setpoint Extended Configuration Packet 0xB6 .. 65

14.33 Linear Actuators – Motion Profile Configuration Packet 0x9A .. 66

14.34 Rotary Actuators – Motion Profile Configuration Packet 0x9A .. 69

14.35 Rotary Actuators – Load Dump Configuration Packet 0xA4 .. 72

14.36 Rotary Actuators – Stall Detection Configuration Packet 0xA8 ... 75

14.37 Linear Actuators – Stall Detection Configuration Packet 0xA8 .. 77

14.38 Rotary Actuators – Gain Scheduling Configuration Packet 0xAB ... 79

14.39 Linear Actuators – Gain Scheduling Configuration Packet 0xAB ... 82

14.40 Rotary Actuators – Position Linearization Configuration Packet 0xAD .. 85

14.41 Rotary Actuators – Raw Position Packet 0xAF ... 87

14.42 Auto-Info Configuration Packet 0xB2 .. 89

14.43 Rotary Actuators – Persistent Revolution Counting Configuration Packet 0xB4 91

14.44 CAN Bus Configuration Packet 0xB8 (Actuators equipped with CAN only) .. 92

14.45 Actuator Name Packet 0xBC .. 94

14.46 Integral Valve Configuration Packet 0xC2 (Actuators equipped with integral valves only) 95

14.47 Ethernet Configuration Packet 0xBE (Actuators equipped with Ethernet only) 96

7

15 Information Packets .. 98

15.1 Acknowledgement Packet ‘A’ ... 98

15.2 Failsafe Time Remaining Information Packet 0x94 .. 100

15.3 Fault History Information Packet ‘N’ .. 101

15.4 Fault Information Packet ‘F’ ... 103

15.5 Firmware Build Information Packet 0x96 ... 105

15.6 Firmware Version Number Packet ‘?’ ... 107

15.7 Scaled Position Information Packet 0x90 ... 108

15.8 Linear Actuators - System Status Information Packet ‘P’ ... 109

15.9 Rotary Actuators - System Status Information Packet ‘P’ .. 111

15.10 System Status Information 2 Packet 0xA2 ... 114

15.11 Linear Actuators – Velocity Information Packet ‘H’ ... 117

15.12 Rotary Actuators – Velocity Information Packet ‘H’ .. 118

15.13 Motion Profile Status Packet 0x9C ... 119

15.14 CAN Bus Status Packet 0xBA (Actuators equipped with CAN only) .. 120

15.15 Modbus Passthrough Packet 0xFE ... 121

15.16 Ethernet Status Packet 0xC0 (Actuators equipped with Ethernet only) ... 123

16 Command Packets ... 125

16.1 Linear Actuators – Calibrate / Configure Position Packet ‘C’ ... 125

16.2 Rotary Actuators – Calibrate / Configure Position Packet ‘C’ ... 126

16.3 Calibrate / Configure Current Packet 0xAA .. 127

16.4 Clear Offsets Command Packet ‘-’ .. 128

16.5 In-System Programming Update Command Packet ‘~’ .. 129

16.6 Load Default (Factory) Configuration Command Packet ‘@’ ... 130

16.7 Reset Faults Command Packet ‘!’ ... 131

16.8 Rotary Actuators - Reset Rotary Counters Command Packet ‘<’ .. 132

16.9 Reset System Command Packet ‘=’ .. 133

16.10 Reverse Direction Command Packet ‘&’... 134

16.11 Save Configuration to EEPROM Command Packet ‘$’.. 135

16.12 Set Duty Cycle Command Packet ‘+’ .. 136

16.13 Set Match Value Command Packet ‘^’ ... 137

16.14 Tare Command Packet ‘#’ .. 138

16.15 Rotary Actuators – Update Position Packet 0xA0 .. 139

17 Example Packet #1 .. 141

8

18 Example Packet #2 .. 141

19 Example CRC Functions ... 142

19.1 CRC Function in C .. 142

19.2 CRC Function in Python .. 143

9

2G Actuator Communications

2 Servo System Overview
All 2G Engineering actuators include a servo drive and motor control system integrated inside of the units. All of
the units provide a standardized serial interface. Depending on which options your unit has, it will have an RS-
232 or an RS-485 physical interface. Most units are available with both interfaces pinned out at the same time.

Other physical interfaces are available such as CAN bus on select models. Information on the CAN protocol is not
included in this document.

Information on how the servo system works, tuning, and general usage of the units is not included in this
document. See the operations manual specific to your model for more information.

10

3 Packet Format Overview
There are two types of “basic” packets the units will accept by default: standard packets and addressed packets.
Ether packet type can be used on RS-232 or RS-485 serial interfaces. Both packet types are automatically
enabled and can be interchanged freely. In addition, both packet types can be sent in either binary or ASCII
mode as described below.

The type of packet is determined by the start delimiter. The actuator will process packets that begin with “<” as
standard packets without an address. Packets that begin with “[” will be treated as addressable packets. Packets
that begin with “(” will be treated as standard ASCII packets. Packets that begin with “{” will be treated as
addressable ASCII packets.

3.1 Standard (Non-Addressed) Packets
All standard packet transactions consist of the following fields:

 Start delimiter:
o “<” (0x3c)

 Length: number of bytes in payload. (1-255)

 Payload:
o Packet type (or command). The first byte (payload index 0) is always the packet type.
o Optional Fields. Many packets contain a variable number of fields following the packet type.

Some packets (such as request packets) do not contain any fields after the type.

 CRC: The CRC is calculated over each byte following the start delimiter. Because the length byte is
included in the CRC, the number of bytes upon which the CRC is calculated is (length + 1). See section
CRC at end of document for algorithm and look-up table.

 End Delimiter:
o “>” (0x3e)

3.2 Addressed Packets
All addressed packet transactions consist of the following fields:

 Start delimiter:
o “[” (0x5b)

 Address.

 Length: number of bytes in payload. (1-255)

 Payload:
o Packet type (or command). The first byte (payload index 0) is always the packet type.
o Optional Fields. Many packets contain a variable number of fields following the packet type.

Some packets (such as request packets) do not contain any fields after the type.

 CRC: The CRC is calculated over each byte following the start delimiter including the address byte.
Because the address byte and the length byte are included in the CRC, the number of bytes upon which
the CRC is calculated is (length + 2). See section CRC at end of document for algorithm and look-up table.

 End Delimiter:
o “]” (0x5d)

*Note: 2G packets do not employ character substitution. Start and end delimiters may appear within packet
payloads. Packet parsers must not rely on delimiters alone for packet delineation.

3.3 ASCII Packets
Both standard and addressed packets can also be sent in ASCII mode. This is useful for packet transport through
systems which support text but not binary data. ASCII packets are encoded as follows:

11

 Start delimiter:
o “(” (0x28) standard
o “{” (0x7B) addressed

 Address. (Addressed packets only; encoded as two ASCII characters (00 – FF).)

 Length: number of bytes in payload. (1-255, encoded as two ASCII characters (01 – FF).) Note that this
counts data bytes, not characters, so the actual number of payload bytes transmitted over the wire will
be 2*Length.

 Payload:
o Packet type (or command). The first byte (payload index 0) is always the packet type.
o Optional Fields. Many packets contain a variable number of fields following the packet type.

Some packets (such as request packets) do not contain any fields after the type.
o Each payload byte is encoded as two ASCII characters (00-FF).

 CRC: The CRC is calculated over each byte (decoded from its ASCII representation) following the start
delimiter, including the address byte for addressed packets. Because the address byte and the length
byte are included in the CRC, the number of bytes upon which the CRC is calculated is (length + 1) for
standard packets, or (length + 2) for addressed packets. See section CRC at end of document for
algorithm and look-up table. The CRC is encoded as two ASCII characters (00 – FF).

 End Delimiter:
o “)” (0x29) standard
o “}” (0x7D) addressed

12

4 Basic Packet Behavior
Upon receiving a packet with a valid CRC, the actuator will respond to the packet. All packets will yield a
response packet: request packets will respond with the requested packet type, all other packets will trigger an
Acknowledgement Packet. When sending command packets to the actuator, your software should always verify
that a response has been received from the actuator before sending the next command. The actuator will send
a response packet within 50ms of receiving a valid packet (typically much faster). If the actuator does not
respond to a packet, you should assume the actuator has not received the command and should resend the
command until a response is received. Actuators will never send out packets except in response to valid
received packets.

If an invalid CRC is received, or a closing delimiter is not received on a packet, the packet will not be handled.
The actuator will increment a counter tracking the number of consecutive damaged packets. When the number
of consecutive damaged packets meets the configured limit, the system will trigger a serial fault. Upon receiving
a packet with a correct CRC, the damaged packet counter will revert to 0. The behavior when a fault is triggered
is specified in the Fault Behavior Packet.

All units will respond to standard packets (with “<”/“>” delimiters). Standard packets will only yield standard
packets in response.

Units will only respond to addressed packets (with “[“/”]” delimiters and unit address field) with a matching
address or broadcast address (0)*. Units responding to addressed packets, including broadcast packets, will
respond with their own address in the return packet.

*Note: To avoid packet collisions, broadcast addressing shall only be used on busses with one actuator present
(point-to-point topology). If multiple units are on a bus (multi-drop topology), actuator units must be individually
addressed.

5 RS-485 and RS-232 Port Activation
Actuator units configured with both RS-232 and RS-485 communication ports can use ether port at any time.
The two ports run independently and process packets as they are received. Commands can be sent to either
port at any time and the actuator will respond to them.

On units with an analog control input, the RS-232 or RS-485 port can be used to communicate with the actuator
(e.g. for status monitoring) at any time. However, you will not be able to control the actuator over the serial
connection until at least one Motor Control Packet has been sent to the unit. This will disable the analog control
input. To resume analog control, power cycle the actuator or send a Reset Packet.

6 Data Types
Unless otherwise noted all the packet fields will be one of the following industry standard data types. All data on
the wire is in BIG ENDIAN format.

 “char” – 8-bit char.

 “uint8” – Unsigned 8-bit integer.

 “int8” – Signed 8-bit integer.

 “uint16” – Unsigned 16-bit integer.

 “int16” – Signed 16-bit integer.

 “uint32” – Unsigned 32-bit integer.

 “int32” – Signed 32-bit integer.

 “uint64” – Unsigned 64-bit integer.

 “float” – 32-bit, single-precision floating point value. (IEEE 754)

13

7 Units
System units are typically specified in Imperial (standard) US units. Units of length are in feet, inches, or
1/1000th of an inch (Thou or Mil).

Actuators will use the following units unless otherwise specified:

7.1 Linear Actuators
o Position: thousandths of an inch (thou or mil).
o Velocity: mil/minute.

o Acceleration: (mil/minute)/second.

7.2 Rotary Actuators
o Position: millidegrees (thousandths of a degree).
o Velocity: rotations per minute (RPM).
o Acceleration: RPM/second.

8 Storage of Configuration Parameters
Packet fields marked non-volatile denote system variables that are part of the unit’s saved configuration. These
values will be lost on reset unless a save command is sent. These values will be reset if a load defaults command
is sent.

9 System Settings
When the actuator powers on, settings are loaded from non-volatile memory into RAM. When a setting is
changed through a packet, the effects will take effect immediately, providing an opportunity to test changes.
However, those changes will be lost unless saved to non-volatile memory by sending a Save Command.

If settings have been saved and actuator operation is not desirable, factory default settings can be loaded with a
Load Defaults Command. As with other setting adjustments, loading defaults does not save values to non-
volatile memory unless a save command is issued.

Loading defaults will load all* system settings. Therefore, it is advisable when adjusting parameters to be certain
that changes are desirable before saving. It is recommended that the system be power cycled (Reset System
Command) if a value is found to be undesirable and the previous value is unknown. Loading defaults is a last-
resort option.

* The only non-volatile values not reset by loading defaults are the internal offsets used by the positioning

system. Because these offsets are performed during manufacturing and are unique to each actuator, these

values cannot be recovered once over-written. When calibrating the absolute position with a calibrate position

command or a tare command, these factory-set offsets are changed. Once a save command is issued, there is no

way to recover the values.

14

10 Actuator Movement Methods
Several methods of control over actuator movement are available. Prior to issuing movement commands, the
actuator motor must be turned on. If the motor is not on, commands will be ignored. If the motor is either
braking or coasting when a movement command is received, braking and coasting will be disabled in order for
the movement to commence.

 Duty Cycle – The simplest form of motor control is triggered by sending a “+” type packet, which causes
the motor to move at a fixed duty cycle (percent of full-scale power) until a different control command
or a stop command is issued.

 Match Value – Identical to Duty Cycle control in operation, but provides more granularity. This is
triggered by sending a “^” type packet. The match value provides a fixed motor output set to a scale
determined by the limit. The Maximum Match configuration parameter will limit the maximum value
that will have any effect.

 Position Setpoint – Uses the actuator’s internal feedback control loop to bring the actuator to a fixed
position. The control loop will continue to maintain the position until a different control command or
stop motor command is issued. If external forces act on the actuator, it will apply an opposing force to
attempt to maintain the position. For linear actuators, both absolute and relative (to a defined zero
point) setpoints can be tracked.

 Velocity Setpoint – Uses the actuator’s internal feedback control loop to travel at a fixed velocity. The
velocity will be maintained until a different control command or stop motor command is issued. This
control method is typically only available for rotary actuators.

 Position Setpoint at Fixed Velocity – Uses the actuator’s internal feedback control loop to travel at a
fixed velocity until a position setpoint is reached. There are 2 main modes of Position Setpoint at Fixed
Velocity:

o Simple: specify a velocity setpoint and a position setpoint in a “U” packet. The feedback control
loop will track the velocity until the position setpoint is reached or passed.

o Advanced: specify a velocity setpoint, position setpoint, stop position threshold, and stop
behavior in a “K” packet. Different stop behaviors may be specified as the position approaches
the setpoint. The control loop may either track the position or stop at the threshold. Options for
turning the motor off and braking are also available. See the packet documentation for “K”
packets for more information.

11 HPU Operation
Hydraulic Power Unit (HPU) actuators behave as rotary actuators. Velocity commands are used to control pump
speed. For HPU speed control, it is suggested to use the 0xB6 packet, rather than the “W” packet, as the former
uses RPM instead of degrees per second and thus allows setting much higher motor speeds. Unless otherwise
noted in the documentation for your specific unit, the forward direction (positive velocity) is the correct
direction for pump operation. For HPU displacement commands (i.e. moving a fixed amount of fluid at a time),
the setpoint position commands can be used. Most HPU units can only control position to the nearest whole
revolution. Position setpoints which are a multiple of 360° therefore must be used for proper operation. It is
suggested to set the unit’s stop behavior to stop control when the target position is reached. The unit’s position
control system is based on an internal degree counter. If a large number of revolutions are accumulated, this
number will overflow. This is only a problem in position control mode; velocity control is unaffected. The
suggested workaround is to send the following sequence of commands if the application is expected to require a
large number of revolutions: power off motor, reset rotary counters, power on motor, send position command.

Actual flow and displacement for a given speed and number of rotations can be determined based on the actual
pump displacement, which will be specified in the documentation provided with your specific HPU.

15

12 System Parameter and Packet Lookup Table
Packets are used to configure and control the actuator. The following table displays the relevant packet
type for setting parameters or issuing commands.

Configuration / Status Parameter Packet Type

Absolute Position S (Linear), S (Rotary)

Absolute Position Setpoint S (Linear), S (Rotary)

Baud Rate B

Board Current Limit I

Board Current Limit Reduction Percentage I

Brake Status 0x86, P (Linear), P (Rotary), X

Calibrated Position C (Linear), C (Rotary)

CAN Bus 0xB8, 0xBA

Communication Address Y

Communication Faults F

Communication Faults History N

Current P (Linear), P (Rotary)

Derivative Maximum Value – Position M (Linear), M (Rotary)

Derivative Maximum Value – Velocity D (Linear), D (Rotary)

Derivative Gain – Position M (Linear), M (Rotary)

Derivative Gain – Velocity D (Linear), D (Rotary)

Duty Cycle +

Endpoints M (Linear), M (Rotary)

Ethernet 0xBE, 0xC0

Failsafe Enable 0x92

Failsafe Timeout 0x92

Failsafe Position 0x92

Failsafe Time Remaining 0x94

Faults F, N

Feed-forward control 0xA6 (Linear), 0xA6 (Rotary)

Gain Scheduling 0xAB (Linear), 0xAB (Rotary)

Hardware Brake Status 0x86, P (Linear), P (Rotary), X

High-Velocity Over-Sampling Samples. E (Linear), E (Rotary)

Integral Gain – Position M (Linear), M (Rotary)

Integral Gain – Velocity D (Linear), D (Rotary)

16

Integrator Maximum Value – Position M (Linear), M (Rotary)

Integrator Maximum Value - Velocity D (Linear), D (Rotary)

Limit M (Linear), M (Rotary)

Linear Velocity P (Linear), P (Rotary)

Low-Velocity Over-Sampling Samples E (Linear), E (Rotary)

Match Value (PWM) ^

Maximum Match Value M (Linear), M (Rotary)

Maximum Voltage 0x82

Model Identifier A

Motion Profile Configuration 0x9A (Linear), 0x9A (Rotary)

Motor Controller Faults F

Motor Controller Faults History N

Motor Current Limit I

Motor Direction P (Linear), P (Rotary)

Motor Revolutions P (Rotary)

Motor State P (Linear), P (Rotary), X

Motor Velocity H (Linear), H (Rotary)

Name 0xBC

Off-Fault Behavior O

On-Fault Behavior O

Over-Sampling Velocity Threshold E (Linear), E (Rotary)

Over Voltage Protection Enable 0x82

PID-Scale Position D (Linear), D (Rotary)

PID-Scale Velocity D (Linear), D (Rotary)

Position Absolute P (Linear), P (Rotary)

Position-Control Target Velocity D (Linear), D (Rotary)

Position Feed-Forward Enable E (Linear), E (Rotary)

Position Feed-Forward Velocity Threshold E (Linear), E (Rotary)

Position Integrator Maximum Value E (Linear), E (Rotary)

Position Low M (Linear), M (Rotary)

Position High M (Linear), M (Rotary)

Position Sensor Faults F

Position Sensor Faults History N

Position Setpoint at Fixed Velocity U (Linear), U (Rotary), K (Linear), U (Rotary)

17

Position Setpoint at Fixed Velocity U (Linear), U (Rotary), K (Linear), U (Rotary)

Position Setpoint Stop Behavior D (Linear), D (Rotary)

Position Setpoint Threshold D (Linear), D (Rotary)

Power Supply Type M (Linear), M (Rotary)

Proportional Gain – Position M (Linear), M (Rotary)

Proportional Gain – Velocity D (Linear), D (Rotary)

Relative Position Setpoint R

Relative Zero Location Z

RS485 Onboard Termination Enable 0x84

RS485 Onboard Termination Port Number 0x84

Running Average Samples E (Linear), E (Rotary)

Scaled Position 0x90

Scaled Position Setpoint 0x88

Shaft Velocity P (Rotary)

Stall Detection 0xA8(Linear), 0xA8 (Rotary)

Temperature Sensors P (Linear), P (Rotary), 0xA2

Temperature Faults F

Temperature Faults History N

Total Degrees (Rotary) P (Rotary)

Valve High Position 0x80

Valve Low Position 0x80

Velocity H (Linear), H (Rotary)

Velocity Setpoint W (Linear), W (Rotary), 0xB6 (Linear), 0xB6 (Rotary)

Version, Firmware 0x96, ?

Voltage P (Linear), P (Rotary)

Valve Control 0xC2

18

Command Packet Type(s)

Acknowledge A

Calibrate Position C (Linear), C (Rotary),

Calibrate Current 0xAA

Clear Offsets -

In-System-Programming Activation ~

Load Factory Defaults @

Modbus Passthrough 0xFE

Position Setpoint U (Linear), U (Rotary), K (Linear), K (Rotary),

S (Linear), S (Rotary)

Position Setpoint at Fixed Velocity U (Linear), U (Rotary), K (Linear), K (Rotary)

Relative Position Setpoint R

Reset Faults !

Reset Rotary Counters <

Reset System (Reboot) =

Reverse Direction &

Set Absolute Position Setpoint S (Linear), S (Rotary)

Set Duty Cycle +

Set Match Value ^

Set Scaled Position Setpoint 0x88

Set Velocity Setpoint W (Linear), W (Rotary)

Save Configuration to EEPROM $

Tare #

Toggle Motor X

Turn Motor On/Off X

19

13 Packet Specifications

14 Configuration Packets

14.1 Linear Actuators - Absolute Position Setpoint Packet ‘S’

14.1.1 Set Packet Type
‘S’ (0x53)

14.1.2 Request type
‘s’ (0x73)

14.1.3 Volatility
All values are volatile and will change according to conditions.

14.1.4 Function
If the motor is on, the control loop will be configured to move the actuator to the specified position.
The characteristics of the movement are determined by the control loop gains, control loop scales,
and sampling settings. The actuator will maintain this position and attempt to maintain the position
if outside forces are exerted, until the motor is turned off or a different setpoint command is
received.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.1.5 Payload Length
5

14.1.6 Payload Structure

14.1.7 Field Descriptions

14.1.7.1 Packet Type
The byte specifying the command: ‘S’ (0x53)

14.1.7.2 Absolute Position Setpoint
Specifies the position, in mil, to which the actuator will travel upon receiving the command.

Linear – Absolute Position Setpoint Configuration

Payload
Index

0 1:4

Data
Type

char int32

Field Packet Type:
‘S’

Absolute Position Setpoint

20

14.2 Rotary Actuators - Absolute Position Setpoint Packet ‘S’

14.2.1 Set Packet Type
‘S’ (0x53)

14.2.2 Request type
‘s’ (0x73)

14.2.3 Volatility
All values are volatile and will change according to conditions.

14.2.4 Function
If the motor is on, the control loop will be configured to move the actuator to the set position. The
characteristics of the movement are determined by the control loop gains, control loop scales, and
sampling settings. The actuator will maintain this position and attempt to maintain the position if
outside forces are exerted, until the motor is turned off or a different setpoint command is received.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.2.5 Payload Length
5

14.2.6 Payload Structure

14.2.7 Field Descriptions

14.2.7.1 Packet Type
The byte specifying the command: ‘S’

14.2.7.2 Absolute Position Setpoint
Specifies the position, in millidegrees, to which the actuator will travel upon receiving the
command.

Rotary - Absolute Position Setpoint Configuration

Payload
Index

0 1:4

Data
Type

char int32

Field Packet Type:
‘S’

Absolute Position Setpoint

21

14.3 Baud Rate Configuration Packet ‘B’

14.3.1 Set Packet Type
‘B’ (0x42)

14.3.2 Request Type
‘b’ (0x62)

14.3.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.3.4 Function
Sets the baud rate that that actuator will use to communicate over serial. The baud rate will change
immediately upon receiving a valid baud rate packet. This allows you to verify that you can
communicate with the actuator at the updated baud rate. The new baud rate will only become
permanent if a save packet is sent. Otherwise, the actuator will revert to the previously saved baud
rate on the next power cycle.

14.3.5 Payload Length
5

14.3.6 Payload Structure

14.3.7 Field Descriptions

14.3.7.1 Packet Type
The byte indicating the packet type: ‘B’ (0x42)

14.3.7.2 Baud Rate
Valid baud rates: 300 - 1000000.

Baud Rate Configuration

Payload
Index

0 1:4

Data
Type

char uint32

(Non-Volatile)

Field Packet Type: ‘B’ Baud rate

22

14.4 Communication Address Configuration Packet ‘Y’

14.4.1 Set Packet type
‘Y’ (0x59)

14.4.2 Request type
‘y’ (0x79)

14.4.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle.

14.4.4 Function
Sets the communication address for the unit. In a point-to-point topology, this can be set by using
non-addressable packets (‘<’ and ‘>’) or with addressable packets addressed to either 0 (broadcast)
or the unit’s current address. Subsequent packets must be addressed using the new address. In a
multi-drop bus, this packet must be addressed to the unit’s current address. Technically, a broadcast
may be used, though all actuators on the bus will be configured with the new address.

14.4.5 Payload Length
2

14.4.6 Payload Structure

14.4.7 Field Descriptions

14.4.7.1 Packet Type
The byte indicating the packet type: ‘Y’ (0x59)

14.4.7.2 Communication Address
Assigns the communication address for the unit. Once assigned, the unit will ignore any packets
unless the address field in the packet matches the unit’s communication address, or broadcast
address (0).
Valid range is 1 to 255 (0 is reserved for broadcasts).

Communication Address Configuration

Payload
Index

0 1

Data
Type

Char uint8

(Non-Volatile)

Field Packet
Type: ‘Y’

Communications Address

23

14.5 Current Limits Configuration Packet ‘I’

14.5.1 Set Packet Type
‘I’ (0x49)

14.5.2 Request Type
‘i’ (0x69)

14.5.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.5.4 Function
Sets the current limit parameters for the board and motor. The board current limit sets the board
current level at which power-reduction measures are taken. The output will be reduced by the
percentage specified for current reduction. The current will slowly rise until the original limit is in
place or until the limit is reached again. These measures are high-level and will result in oscillations
of the actuator output if the load is not reduced. The motor current limit is a hardware limit on the
maximum current through the motor windings. This effectively functions as a limit on the maximum
output torque of the actuator.

14.5.5 Payload Length
8

14.5.6 Payload Structure

14.5.7 Field Descriptions

14.5.7.1 Packet Type
The byte indicating the packet type: ‘I’ (0x49)

14.5.7.2 Board Current Limit
Sets the board current limit (in milliamps). This is the limit above which power-reduction measures
are taken to reduce power draw.

14.5.7.3 Board Current Limit Reduction Percentage
Acceptable values: 0-100 (percent).
Sets the amount by which the motor output will be reduced when the board current limit is
reached.

14.5.7.4 Motor Current Limit
Sets the motor control DAC value, setting a maximum motor current draw. Value is in milliamps.

Current Limits Configuration

Payload
Index

0 1:4 5 6:7

Data
Type

char uint32

(Non-Volatile)

uint8

(Non-Volatile)

uint16

(Non-Volatile)

Field Packet
Type: ‘I’

Board Current Limit Board Current Limit
Reduction Percentage.

Motor Current Limit.

24

14.6 Linear Actuators - Failsafe Configuration Packet 0x92

14.6.1 Set Packet Type
0x92

14.6.2 Request Type
0x93

14.6.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.6.4 Function
This packet is used to enable and configure the failsafe mode. When in failsafe mode, the actuator
will move to a specified position if no System Info packets are received within a certain amount of
time.

14.6.5 Payload Length
10

14.6.6 Payload Structure

14.6.7 Field Descriptions

14.6.7.1 Packet Type
The byte indicating the packet type: 0x92(set), 0x93(request)

14.6.7.2 Failsafe Enable
Bit 0:
0 – Disable Failsafe Mode
1 – Enable Failsafe Mode
Bit 1:
0 – Do not copy Failsafe Configuration to Global Configuration
1 – Copy Failsafe Configuration to Global Configuration

If this is set, the failsafe configuration will be copied to the global configuration file. If a “Save
Configuration to EEPROM” packet is subsequently issued, the specified failsafe configuration will
be automatically enabled every time the actuator is powered on. This configuration will persist
until the failsafe mode is manually disabled and another “Save Configuration to EEPROM”
command is issued.
In packets returned from the actuator, this bit will be set if the currently active failsafe
configuration matches the failsafe configuration in the global configuration file.

Linear – Failsafe Configuration

Payload
Index

0 1 2:5 6:9

Data
Type

Char uint8

(Non-Volatile)

uint32

(Non-Volatile)

int32

(Non-Volatile)

Field Packet
Type: 0x92

Failsafe Enable Timeout Failsafe Position

25

14.6.7.3 Timeout
Specifies, in milliseconds, the failsafe timeout. When failsafe mode is enabled, if this amount of
time elapses without the actuator receiving a valid packet, the actuator will move to the failsafe
position.
The timeout is accurate to within 100ms.
Timeout values greater than (2^32 – 200) are undefined.

14.6.7.4 Failsafe Position
Specifies the position to which the actuator will move, in mil, after the timeout has expired.

26

14.7 Rotary Actuators - Failsafe Configuration Packet 0x92

14.7.1 Set Packet Type
0x92

14.7.2 Request Type
0x93

14.7.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle.

14.7.4 Function
This packet is used to enable and configure the failsafe mode. When in failsafe mode, the actuator
will move to a specified position if no System Info request packets are received within a certain
amount of time.

14.7.5 Payload Length
10

14.7.6 Payload Structure

14.7.7 Field Descriptions

14.7.7.1 Packet Type
The byte indicating the packet type: 0x92(set), 0x93(request)

14.7.7.2 Failsafe Enable
Bit 0:
0 – Disable Failsafe Mode
1 – Enable Failsafe Mode
Bit 1:
0 – Do not copy Failsafe Configuration to Global Configuration
1 – Copy Failsafe Configuration to Global Configuration

If this is set, the failsafe configuration will be copied to the global configuration file. If a “Save
Configuration to EEPROM” packet is subsequently issued, the specified failsafe configuration will
be automatically enabled every time the actuator is powered on. This configuration will persist
until the failsafe mode is manually disabled and another “Save Configuration to EEPROM”
command is issued.
In packets returned from the actuator, this bit will be set if the currently active failsafe
configuration matches the failsafe configuration in the global configuration file.

Rotary – Failsafe Configuration

Payload
Index

0 1 2:5 6:9

Data
Type

char uint8

(Non-Volatile)

uint32

(Non-Volatile)

int32

(Non-Volatile)

Field Packet
Type: 0x92

Failsafe Enable Timeout Failsafe Position

27

14.7.7.3 Timeout
Specifies the failsafe timeout, in milliseconds. When failsafe mode is enabled, if the timeout time
elapses without the actuator receiving a valid packet, the actuator will move to the failsafe
position.
The timeout is accurate to within 100ms.
Timeout values greater than (232 – 200) are undefined.

14.7.7.4 Failsafe Position
Specifies the position, in millidegrees, to which the actuator will move after the timeout has
expired.

28

14.8 Fault Behavior Configuration Packet ‘O’

14.8.1 Set Packet Type
‘O’ (0x4F)

14.8.2 Request Type
‘o’ (0x6F)

14.8.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.8.4 Function
Configures the behavior of the actuator when faults occur.

14.8.5 Payload Length
3

14.8.6 Payload Structure

14.8.7 Field Descriptions

14.8.7.1 Packet Type
The byte indicating the packet type: ‘O’ (0x4F)

14.8.7.2 On-Fault Behavior
Sets the actuator behavior when a fault occurs:

0 – Turn off motor.
1 – Brake motor.
2 – Coast motor.
3 – Continue operation and report fault.

14.8.7.3 Reserved
As of actuator firmware version 4.0 (released 2016-03-07), this field is not used and has no effect
on actuator operation.

Fault Behavior Configuration

Payload
Index

0 1 2

Data
Type

Char uint8

(Non-Volatile)

uint8

(Non-Volatile)

Field Packet
Type: ‘O’

On-Fault Behavior Reserved

29

14.9 Hardware Brake Configuration Packet 0x86

14.9.1 Set Packet Type
0x86

14.9.2 Request Type
0x87

14.9.3 Volatility
All values are volatile and will change according to conditions.

14.9.4 Function
This packet is only functional on actuators with a hardware brake installed. Issuing this command
will engage or disengage the hardware brake.

14.9.5 Payload Length
2

14.9.6 Payload Structure

14.9.7 Field Descriptions

14.9.7.1 Packet Type
The byte indicating the packet type: 0x86(set), 0x87(request)

14.9.7.2 Brake Status
Indicates the hardware brake status. This field uses the following enumerated values:
 0 – Disengage the hardware brake. If the motor is currently not tracking a setpoint, this will turn
the motor on and place it into the coast state. In received packet, indicates the hardware brake is
disengaged.
 1 – Engage the hardware brake. If the motor is currently tracking a setpoint, the motor will stop
tracking the current setpoint before engaging the brake. In received packet, indicates the
hardware brake is engaged.

Hardware Brake Configuration

Payload
Index

0 1

Data
Type

char uint8

Field Packet Type:
0x86

Brake Status

30

14.10 Motor Control Configuration Packet ‘X’

14.10.1 Set Packet Type
‘X’ (0x58)

14.10.2 Request type
‘x’ (0x78)

14.10.3 Volatility
All values are volatile and will change according to conditions.

14.10.4 Function
The motor control packet is used to toggle motor states.
The motor must be turned on before the actuator will respond to any movement commands.

14.10.5 Payload Length
2

14.10.6 Payload Structure

14.10.7 Field Descriptions

14.10.7.1 Packet Type
The byte specifying the command: ‘X’ (0x58)

14.10.7.2 Motor State
Packets sent to actuator shall use the following enumerated values:

0 – Turn Off
1 – Turn On (brake off, coast off)
2 – Turn On and Brake
3 – Turn On and Coast

Packets received from the actuator contain additional information regarding hardware braking
(certain models are enabled for hardware braking).
Below are the designations sent out from the actuator:
 Bits 0-2:
 000 – Motor is Off.
 001 – Motor is On.
 010 – Motor is On and Braking.
 011 – Motor is On and Coasting.
 Bit 4 – Reserved
 Bit 5 – Reserved
 Bit 6:
 0 – Hardware Brake is Disengaged.

Motor Control Configuration

Payload
Index

0 1

Data
Type

char uint8

Field Packet
Type: ‘X’

Motor State

31

 1 – Hardware Brake is Engaged.
 Bit 7:
 0 – Unit does not have hardware brake.
 1 – Unit has hardware brake.

32

14.11 Overvoltage Protection Configuration Packet 0x82

14.11.1 Set Packet Type
0x82

14.11.2 Request Type
0x83

14.11.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.11.4 Function (if this feature is equipped)
Sets a maximum voltage limit for the actuator. Above this limit, the actuator will switch into braking
mode. This is useful to prevent damage to the actuator if it is backdriven.

14.11.5 Payload Length
7

14.11.6 Payload Structure

14.11.7 Field Descriptions

14.11.7.1 Packet Type
The byte indicating the packet type: 0x82(set), 0x83 (request)

14.11.7.2 Overvoltage protection enable
0 – Disabled.
1 – Enabled.

14.11.7.3 Maximum Voltage
Specifies the voltage, in mV, over which the actuator will automatically brake.

Overvoltage Protection Configuration

Payload
Index

0 1 2:5 6

Data
Type

char bool

(Non-Volatile)

uint32

(Non-Volatile)

uint8

Field Packet
Type:
0x82

Overvoltage protection enable Maximum Voltage Reserved

33

14.12 Linear Actuators - Position Sampling Configuration Packet ‘E’

14.12.1 Set Packet Type
‘E’ (0x45)

14.12.2 Request Type
‘e’ (0x65)

14.12.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.12.4 Function
This packet configures various parameters of the actuator’s positioning system. Generally, this is not
changed from factory values. Changing values will have an effect on control reactivity, stability, and
general tuning of the feedback control structure. It is advisable to re-tune the actuator if any of
these values are modified.

14.12.5 Payload Length
15

14.12.6 Payload Structure

14.12.7 Field Descriptions

14.12.7.1 Packet Type
The byte indicating the packet type: ‘E’ (0x45)

14.12.7.2 Low-Velocity Over-Sampling Samples
The number of samples to take when velocity is below the velocity threshold (see 3rd parameter in
packet).
Valid range: 1-500.
Use value 1 to perform no over-sampling.

14.12.7.3 High-Velocity Over-Sampling Samples
The number of samples to take when velocity is above the velocity threshold (see 3rd parameter in
packet).
Valid range: 1-500.
Use value 1 to perform no over-sampling.

Linear – Position Sampling Configuration

Paylo
ad
Index

0 1:2 3:4 5:8 9 10 11:14

Data
Type

Char uint16

(Non-Volatile)

uint16

(Non-Volatile)

uint32

(Non-Volatile)

uint8

(Non-Volatile)

bool

(Non-Volatile)

uint32

(Non-Volatile)

Field Packet
Type:
‘E’

Low-Velocity
Over-Sampling
Samples.

High-Velocity
Over-Sampling
Samples.

Over-Sampling
Velocity
Threshold.

Running-Average
Samples.

Unused/ No Effect Unused/ No Effect

34

14.12.7.4 Over-Sampling Velocity Threshold
Determines whether to use Low-Velocity samples or High-Velocity samples for oversampling.
Using a lower value for high-velocity increases the system responsiveness at higher speeds.

14.12.7.5 Running-Average Samples
Determines the window size of the running average function used to generate actuator position.
Maximum number: 64

14.12.7.6 Unused
The value has no effect on the behavior of the System.

14.12.7.7 Unused
The value has no effect on the behavior of the System.

35

14.13 Rotary Actuators - Position Sampling Configuration Packet ‘E’

14.13.1 Set Packet Type
‘E’ (0x45)

14.13.2 Request Type
‘e’ (0x65)

14.13.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.13.4 Function
This packet configures various parameters of the actuator’s positioning system. Generally, this is not
changed from factory values. Changing values will have an effect on control reactivity, stability, and
general tuning of the feedback control structure. It is advisable to re-tune the actuator if any of
these values are modified.

14.13.5 Payload Length
15

14.13.6 Payload Structure

14.13.7 Field Descriptions

14.13.7.1 Packet Type
The byte indicating the packet type: ‘E’ (0x45)

14.13.7.2 Low-Velocity Over-Sampling Samples
The number of samples to take when velocity is below the velocity threshold (see 3rd parameter in
packet).
Valid range: 1-500.
Use value 1 to perform no over-sampling.

14.13.7.3 High-Velocity Over-Sampling Samples
The number of samples to take when velocity is above the velocity threshold (see 3rd parameter in
packet).
Valid range: 1-500.
Use value 1 to perform no over-sampling.

Rotary - Position Sampling Configuration

Paylo
ad
Inde
x

0 1:2 3:4 5:8 9 10 11:14

Data
Type

Char uint16

(Non-Volatile)

uint16

(Non-Volatile)

uint32

(Non-Volatile)

uint8

(Non-Volatile)

bool

(Non-Volatile)

uint32

(Non-Volatile)

Field Packet
Type:
‘E’

Low-Velocity
Over-Sampling
Samples.

High-Velocity
Over-Sampling
Samples.

Over-Sampling
Velocity
Threshold.

Running-
Average
Samples.

Unused/ No
Effect

Unused/ No
effect

36

14.13.7.4 Over-Sampling Velocity Threshold
Determines whether to use Low-Velocity samples or High-Velocity samples for oversampling.
Using a lower value for high-velocity increases the system responsiveness at higher speeds.

14.13.7.5 Running-Average Samples
Determines the window size of the running average function used to generate actuator position.
Maximum number: 64

14.13.7.6 Unused
The value has no effect on the behavior of the System.

14.13.7.7 Unused
The value has no effect on the behavior of the System.

37

14.14 Linear Actuators - Position Setpoint at Fixed Velocity Configuration Packet ‘U’

14.14.1 Set Packet Type
‘U’ (0x55)

14.14.2 Request type
‘u’ (0x75)

14.14.3 Volatility
All values are volatile and will change according to conditions.

14.14.4 Function
This command causes the actuator to move to an absolute position setpoint at a fixed velocity. This
allows overriding the system velocity target for position control.
This packet is the simplified method of sending a position setpoint at fixed velocity command. The
extended version of the packet (‘K’) contains an additional threshold parameter, as well as allowing
the endpoint behavior to be specified. For this packet, the threshold is assumed to be 0, and the
endpoint behavior is set to 1 (Stop Tracking). See documentation on the K packet for more
information.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on, or the values will be lost.

14.14.5 Payload Length
9

14.14.6 Payload Structure

14.14.7 Field Descriptions

14.14.7.1 Packet Type
The byte specifying the command: ‘U’ (0x55)

14.14.7.2 Velocity
Velocity at which the shaft will travel, in mil per minute, until reaching the position setpoint.

14.14.7.3 Position Setpoint
The absolute position to which the shaft will travel, in mil.

Linear – Position Setpoint at Fixed Velocity Configuration

Payload
Index

0 1:4 5:8

Data
Type

char uint32

int32

Field Packet
Type: ‘U’

Velocity Position Setpoint

38

14.15 Rotary Actuators - Position Setpoint at Fixed Velocity Configuration Packet ‘U’

14.15.1 Set Packet Type
‘U’ (0x55)

14.15.2 Request type
‘u’ (0x75)

14.15.3 Volatility
All values are volatile and will change according to conditions.

14.15.4 Function
This command causes the actuator to move to an absolute position setpoint at a fixed velocity. This
allows overriding the system velocity target for position control.
This packet is the simplified method of sending a position setpoint at fixed velocity command. The
extended version of the packet (‘K’) contains an additional threshold parameter, as well as allowing
the endpoint behavior to be specified. For this packet, the threshold is assumed to be 0, and the
endpoint behavior is set to 1 (Stop Tracking). See documentation on the K packet for more
information.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on, or the values will be lost.

14.15.5 Payload Length
9

14.15.6 Payload Structure

14.15.7 Field Descriptions

14.15.7.1 Packet Type
The byte specifying the command: ‘U’ (0x55)

14.15.7.2 Velocity
Velocity at which the shaft will rotate until reaching the position setpoint.
The units are in milli-RPM (1/1000 rotation per minute).

14.15.7.3 Position Setpoint
The absolute position to which the shaft will rotate, in millidegrees. This value may be negative.

Rotary - Position Setpoint at Fixed Velocity Configuration

Payload
Index

0 1:4 5:8

Data
Type

char uint32

int32

Field Packet
Type: ‘U’

Velocity Position Setpoint

39

14.16 Linear Actuators - Position Setpoint at Fixed Velocity Extended Configuration Packet
‘K’

14.16.1 Set Packet Type
‘K’ (0x4B)

14.16.2 Request type
‘k’ (0x6B)

14.16.3 Volatility
All values are volatile and will change according to conditions.

14.16.4 Function
This is the extended version of the ‘U’ packet.
This command will trigger the control loop to seek a position at a fixed target velocity. Based on the
“Stop Behavior” field, the actuator will be driven in either position seeking mode (Actuator will slow
down when nearing the target position), or constant velocity mode. Once the shaft comes within
the specified threshold of the position setpoint, the system will switch to the specified stop mode. If
a “Maintain Position” stop mode is selected, the actuator will maintain the set position until the
motor is turned off or until another control packet is received.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.16.5 Payload Length
14

14.16.6 Payload Structure

14.16.7 Field Descriptions

14.16.7.1 Packet Type
The byte specifying the command: ‘K’ (0x4B)

14.16.7.2 Velocity
Velocity at which the shaft will travel, in mil per minute, until reaching the position setpoint.

14.16.7.3 Position Setpoint
The absolute position to which the shaft will travel, in mil.

14.16.7.4 Stop Threshold
Configures the distance, in mil, to the position setpoint where the control loop will switch from
velocity control to setpoint control.

Linear – Position Setpoint at Fixed Velocity Extended Configuration

Payload
Index

0 1:4 5:8 9:12 13

Data
Type

char uint32

int32 uint32 uint8

Field Packet
Type: ‘K’

Velocity Position Setpoint Stop Threshold Stop Behavior

40

Configuring value zero will cause the control loop to seek velocity until the position setpoint is
reached (this behavior is the same as using the simple form of the command) and then stop the
motor (overshoot will be dependent on many factors including control loop run frequency, velocity
setpoint, etc.)

14.16.7.5 Stop Behavior
Specifies the behavior upon reaching the threshold or position setpoint. Use the following
enumerated values:

0 – Seek position with specified maximum velocity. Maintain position when reached.
1 – Seek position with specified maximum velocity. Stop control when position reached.
2 – Seek position with specified maximum velocity. Turn off motor when position is reached.
3 – Seek position with specified maximum velocity. Brake when position is reached.
4 – Drive actuator at specified velocity. Stop control when position is reached or passed*
5 – Drive actuator at specified velocity. Turn off motor when position is reached or passed*
6 – Drive actuator at specified velocity. Brake motor when position is reached or passed*
7 – Seek position with specified maximum velocity. Apply hardware brake when position is
reached.
8 – Drive actuator at specified velocity. Apply hardware brake when position is reached or
passed*
9 – Seek position with specified maximum velocity. Continue to seek position while distance to
the position setpoint is less than the position setpoint threshold. Maintain constant power
while distance to setpoint is less than the threshold.
10 – Seek position with specified maximum velocity. Continue to seek position while the
distance to the position setpoint is less than the position setpoint threshold. Apply electronic
brake while the distance to setpoint is less than the threshold. (Available on firmware version
8.8 or later)

All other values are undefined and should not be used.

*Actuator may overshoot target position due to mechanical inertia.

41

14.17 Rotary Actuators - Position Setpoint at Fixed Velocity Extended Configuration
Packet ‘K’

14.17.1 Set Packet Type
‘K’ (0x4B)

14.17.2 Request type
‘k’ (0x6B)

14.17.3 Volatility
All values are volatile and will change according to conditions.

14.17.4 Function
This is the extended version of the ‘U’ packet.
This command will trigger the control loop to seek a position at a fixed target velocity. Based on the
“Stop Behavior” field, the actuator will be driven in either position seeking mode (Actuator will slow
down when nearing the target position), or constant velocity mode. Once the shaft comes within
the specified threshold of the position setpoint, the system will switch to the specified stop mode. If
a “Maintain Position” stop mode is selected, the actuator will maintain the set position until the
motor is turned off or until another control packet is received.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.17.5 Payload Length
14

14.17.6 Payload Structure

14.17.7 Field Descriptions

14.17.7.1 Packet Type
The byte specifying the command: ‘K’ (0x4B)

14.17.7.2 Velocity
Velocity at which the shaft will rotate until reaching the position setpoint.
The units are in milli-RPM (1/1000 rotation per minute).

14.17.7.3 Position Setpoint
The absolute position to which the shaft will travel, in millidegrees.

Rotary - Position Setpoint at Fixed Velocity Extended Configuration

Payload
Index

0 1:4 5:8 9:12 13

Data
Type

Char uint32

int32 uint32 uint8

Field Packet
Type: ‘K’

Velocity Position Setpoint Stop Threshold Stop Behavior

42

14.17.7.4 Stop Threshold
Configures the distance, in millidegrees, to the position setpoint where the control loop will switch
from velocity control to setpoint control.
Configuring value zero will cause the control loop to seek velocity until the position setpoint is
reached (this behavior is the same as using the simple form of the command) and then stop the
motor (overshoot will be dependent on many factors including control loop run frequency, velocity
setpoint, etc.)

14.17.7.5 Stop Behavior
Specifies the behavior upon reaching the threshold or position setpoint. Use the following
enumerated values:

0 – Seek position with specified maximum velocity. Maintain position when reached.
1 – Seek position with specified maximum velocity. Stop control when position reached.
2 – Seek position with specified maximum velocity. Turn off motor when position is reached.
3 – Seek position with specified maximum velocity. Brake when position is reached.
4 – Drive actuator at specified velocity. Stop control when position is reached or passed*
5 – Drive actuator at specified velocity. Turn off motor when position is reached or passed*
6 – Drive actuator at specified velocity. Brake motor when position is reached or passed*
7 – Seek position with specified maximum velocity. Apply hardware brake when position is
reached.
8 – Drive actuator at specified velocity. Apply hardware brake when position is reached or
passed*
9 – Seek position with specified maximum velocity. Continue to seek position while distance to
the position setpoint is less than the position setpoint threshold. Maintain constant power
while distance to setpoint is less than the threshold.
10 – Seek position with specified maximum velocity. Continue to seek position while the
distance to the position setpoint is less than the position setpoint threshold. Apply electronic
brake while the distance to setpoint is less than the threshold. (Available on firmware version
8.8 or later)

All other values are undefined and should not be used.

*Actuator may overshoot target position due to mechanical inertia.

43

14.18 Linear Actuators – Relative Position Setpoint Packet ‘R’

14.18.1 Set Packet Type
‘R’ (0x52)

14.18.2 Request type
‘r’ (0x72)

14.18.3 Volatility
All values are volatile and will change according to conditions.

14.18.4 Function
Relative positioning is not supported on rotary actuators.
If the motor is on, the control loop will be configured to move the actuator to the position relative
to relative-zero. The characteristics of the movement are determined by the control loop gains,
control loop scales, and sampling settings. The actuator will maintain this position and attempt to
maintain the position if outside forces are exerted, until the motor is turned off or a different
setpoint command is received.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.18.5 Payload Length
5

14.18.6 Payload Structure

14.18.7 Field Descriptions

14.18.7.1 Packet Type
The byte specifying the command: ‘R’ (0x52)

14.18.7.2 Relative Position Setpoint
Specifies the position, in mil, to which the actuator will travel upon receiving the command.
The position may be negative if the relative zero position is greater than position 0.

Linear – Relative Position Setpoint Configuration

Payload
Index

0 1:4

Data
Type

Char int32

Field Packet
Type: ‘R’

Relative Position Setpoint

44

14.19 Linear Actuators - Relative Zero Position Configuration Packet ‘Z’

14.19.1 Set Packet Type
‘Z’ (0x5A)

14.19.2 Request Type
‘z’ (0x7A)

14.19.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.19.4 Function
Sets the relative zero position to be used as a reference point for the Relative Position Setpoint
command.
Linear actuators only, relative positioning is not supported on rotary actuators.

14.19.5 Payload Length
5

14.19.6 Payload Structure

14.19.7 Field Descriptions

14.19.7.1 Packet Type
The byte indicating the packet type: ‘Z’ (0x5A)

14.19.7.2 Relative Zero location as indicated by absolute position
This value is the absolute position that will be treated as the relative zero location. For instance, if
this value is 1,000 (1 inch), then the absolute position at 1 inch will be treated as relative zero. In
this situation, a relative setpoint of -1 inch will send the actuator to the absolute position of 0
inches.
Relative Zero location may also be set by issuing a tare command.
The valid range is from Position Low to Position High, in mil.

Linear – Relative Zero Position Configuration

Payload
Index

0 1:4

Data
Type

char uint32

(Non-Volatile)

Field Packet Type: ‘Z’ Absolute Position to be regarded as relative zero.

45

14.20 RS485 Termination Configuration Packet 0x84 (Actuators equipped with RS485
Only)

14.20.1 Set Packet Type
0x84

14.20.2 Request Type
0x85
Note that this request packet must include the desired port number as an additional byte after the
request type. Example request packet for port 1:
0x3C 0x02 0x85 0x01 0x26 0x3E

14.20.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.20.4 Function
This command enables a built-in termination resistor of 120 ohms across the RS-485 D+ and D- lines.

14.20.5 Payload Length
3

14.20.6 Payload Structure
(Firmware versions below 3.10 do not include the Port Number in their response packets)

14.20.7 Field Descriptions

14.20.7.1 Packet Type
The byte indicating the packet type: 0x84 (set), 0x85 (request)

14.20.7.2 Port Number
1 – RS485 Port 1
2 – RS485 Port 2 (if equipped)

14.20.7.3 Port Termination Enable
0 – Port Termination Disabled
1 – Port Termination Enabled

RS485 Onboard Termination Configuration

Payload
Index

0 1 2

Data
Type

char uint8

(Non-Volatile)

bool

(Non-Volatile)

Field Packet
Type:
0x84

Port Number Port Termination Enable

46

14.21 Scaled Position Setpoint Configuration Packet 0x88 (Actuators equipped with
position scaling only)

14.21.1 Set Packet Type
0x88

14.21.2 Request Type
0x89

14.21.3 Volatility
All values are volatile and will change according to conditions.

14.21.4 Function
This packet is used to send a scaled absolute setpoint, or request the current scaled position of the
actuator

14.21.5 Payload Length
5

14.21.6 Payload Structure

14.21.7 Field Descriptions

14.21.7.1 Packet Type
The byte indicating the packet type: 0x88 (set), 0x89 (request)

14.21.7.2 Scaled Setpoint
Sets the point to which the actuator will travel, scaled using the actuator’s internal scaling
function.
0 is the center point, and -10000 to 10000 represent the extremes of travel. Input points are
mapped to actuator shaft positions using a customer-specified equation.

Scaled Position Setpoint

Payload
Index

0 1:4

Data
Type

char int32

Field Packet Type:
0x88

Scaled Setpoint

47

14.22 Linear Actuators - System Configuration 1 Packet ‘M’

14.22.1 Set Packet Type
‘M’ (0x4D)

14.22.2 Request type
 ‘m’ (0x6D)

14.22.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.22.4 Function
The first of 2 main system configuration packets, this packet deals with the basic position-control
tuning parameters and hardware related parameters relevant to basic motion control.

14.22.5 Payload Length
34

14.22.6 Payload Structure

Linear – System Configuration 1 (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16 17:20

Data
Type

Char Float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

Field Packet type
‘M’

Proportional Gain
for position control
loop

Integral Gain for
position control
loop

Derivative Gain for
position control loop

Position Error Integrator
maximum value

 Position Derivative clamp
value

Linear – System Configuration 1 (Table 2 of 2)

Payload
Index

21:22 23:24 25:28 29:32 33

Data
Type

uint16

(Non-Volatile)

uint16

(Non-Volatile)

int32

(Non-Volatile)

int32

(Non-Volatile)

uint8

(Non-Volatile)

Field Limit/Period Maximum Match

Position High Position Low Power Supply Type

48

14.22.7 Field Descriptions

14.22.7.1 Packet Type
 The byte indicating the packet type: ‘M’ (0x4D)

14.22.7.2 Proportional Gain for Position Control Loop
Tunes the proportional response of the position control PID loop.

14.22.7.3 Integral Gain for Position Control Loop
Tunes the integral response of the position control PID loop.

14.22.7.4 Derivative Gain for Position Control Loop
Tunes the derivative response of the position control PID loop.

14.22.7.5 Position Error Integrator Maximum Value
Sets an upper limit to how large the integrator can grow.

14.22.7.6 Derivative Clamp Value
Sets an upper limit for the contribution of the derivative term to the overall PID system output.

14.22.7.7 Limit/Period
Sets the value of the limit (period) register. This governs the PWM periodicity for the energy being
supplied to the motor.

14.22.7.8 Maximum Match
Sets the maximum match for the pulse-width modulation of power supplied to the motor. In
effect, this governs the upper limit of the duty cycle.

14.22.7.9 Position High
This indicates the upper range of actuator movement. For setpoint control, this will be the highest
absolute position, in mils, to which the actuator will extend.

14.22.7.10 Position Low
This indicates the lower range of actuator movement. For setpoint control, this will be the lowest
absolute position, in mils, to which the actuator will retract.

14.22.7.11 Power Supply Type
Used to determine current limiting factors. Use the following enumerations:
0 – Battery
1 – Power Supply

49

14.23 Rotary Actuators - System Configuration 1 Packet ‘M’

14.23.1 Set Packet Type
‘M’ (0x4D)

14.23.2 Request type
 ‘m’ (0x6D)

14.23.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.23.4 Function
The first of 2 main system configuration packets, this packet deals with the basic position-control
tuning parameters and hardware related parameters relevant to basic motion control.

14.23.5 Payload Length
34

14.23.6 Payload Structure

Rotary – System Configuration 1 (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16 17:20

Data
Type

Char Float

(Non-Volatile)

float

(Non-Volatile)

Float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

Field Packet type
‘M’

Proportional Gain
for position control
loop

Integral Gain for
position control
loop

Derivative Gain for
position control loop

Position Error Integrator
maximum value

 Position Derivative clamp
value

Rotary – System Configuration 1 (Table 2 of 2)

Payload
Index

21:22 23:24 25:28 29:32 33

Data
Type

uint16

(Non-Volatile)

uint16

(Non-Volatile)

int32

(Non-Volatile)

int32

(Non-Volatile)

uint8

(Non-Volatile)

Field Limit/Period Maximum Match

Position High Position Low Power Supply Type

50

14.23.7 Field Descriptions

14.23.7.1 Packet Type
 The byte indicating the packet type: ‘M’ (0x4D)

14.23.7.2 Proportional Gain for Position Control Loop
Tunes the proportional response of the position control PID loop.

14.23.7.3 Integral Gain for Position Control Loop
Tunes the integral response of the position control PID loop.

14.23.7.4 Derivative Gain for Position Control Loop
Tunes the derivative response of the position control PID loop.

14.23.7.5 Position Error Integrator Maximum Value
Sets an upper limit to how large the position error integrator can grow.

14.23.7.6 Position Derivative Clamp Value
Sets an upper limit for the contribution of the derivative term to the position PID system output.

14.23.7.7 Limit/Period
Sets the value of the limit (period) register. This governs the PWM periodicity on the power being
supplied to the motor.

14.23.7.8 Maximum Match
Sets the maximum match for the pulse-width modulation of power supplied to the motor. In
effect, this governs the upper limit of the duty cycle.

14.23.7.9 Position High
For actuators that use endpoints (not free spinning), this indicates the upper range of actuator
rotation. For setpoint control, this will be the highest position, in millidegrees, to which the
actuator will rotate.

14.23.7.10 Position Low
For actuators that use endpoints (not free spinning), this indicates the lower range of actuator
rotation. For setpoint control, this will be the lowest position, in millidegrees, to which the
actuator will rotate.

14.23.7.11 Power Supply Type
Used to determine current limiting factors. Use the following enumerations:
0 – Battery
1 – Power Supply

51

14.24 Linear Actuators - System Configuration 2 Packet ‘D’

14.24.1 Set Packet Type
‘D’ (0x44)

14.24.2 Request type
‘d’ (0x64)

14.24.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.24.4 Function
The second of the two main system configuration packets, the payload contains tuning parameters
for the inner PID control loop as well as parameters that provide for control over some of the more
nuanced behaviors of the feedback control system.

14.24.5 Payload Length
42

14.24.6 Payload Structure

Linear – System Configuration 2 (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16 17:20

Data
Type

char float

(Non-Volatile)

float

(Non-Volatile)

Float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

Field Packet
Type:
‘D’

Proportional Gain for
velocity control loop

Integral Gain for
velocity control loop

Derivative Gain for
velocity control loop.

Velocity
Integrator
Maximum
Value

Velocity
Derivative clamp
value

Linear – System Configuration 2 (Table 2 of 2)

Payload
Index

21:24 25:28 29:32 33:36 37:40 41

Data
Type

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint8

(Non-Volatile)

Field PID Position
Control Scaling
Factor

PID Velocity
Control Scaling
Factor

Reserved /
Unused

Position Control
Target Velocity

Position Setpoint
Threshold

Position Setpoint
Stop Behavior

52

14.24.7 Field Descriptions

14.24.7.1 Packet Type
The byte indicating the packet type: ‘D’ (0x44)

14.24.7.2 Proportional Gain for Velocity Control Loop
Tunes the proportional response of the velocity control PID loop.

14.24.7.3 Integral Gain for Velocity Control Loop
Tunes the integral response of the velocity control PID loop.

14.24.7.4 Derivative Gain for Velocity Control Loop
Tunes the derivative response of the velocity control PID loop.

14.24.7.5 Velocity Integrator Maximum Value
Sets an upper limit on how large the error integrator can grow.

14.24.7.6 Velocity Derivative Clamp Value
Sets an upper limit for the contribution of the derivative term to the velocity PID system output.

14.24.7.7 PID Scale Position
When the actuator is issued a position setpoint, this parameter controls how sensitive the PID
controller is to the position error. This is a unitless quantity which controls how quickly the
position control loop will saturate at its highest value (the position control target velocity) for a
given position error.

14.24.7.8 PID Scale Velocity
When the actuator is issued a position or velocity setpoint, this parameter controls how sensitive
the PID controller is to the velocity error. This is a unitless quantity which controls how quickly
the velocity will saturate at its highest value (100% motor duty cycle) for a given velocity error.

14.24.7.9 Reserved/Unused
The value has no effect on the system.

14.24.7.10 Position Target Velocity
When the actuator is issued a position setpoint command, this is the maximum velocity (in milli-
inches per minute) that the control loop will use before slowing down as the shaft nears the
setpoint. When motion profiling is enabled, this value is also used as the speed limit for position-
to-positon profiles.

14.24.7.11 Position Setpoint Threshold
The position setpoint threshold is the allowable error between the position setpoint and the shaft
position at which point the system will assume the setpoint has been reached and will then act
according to the setpoint stop behavior (see field below). This field is in milli-inches.

14.24.7.12 Setpoint stop behavior
Indicates actuator behavior once the shaft reaches the setpoint (less the setpoint threshold).
Use the following enumerations:
0 – Continue to seek position until the motor is turned off or a new command is issued.
1 – Stop tracking position when the setpoint is reached.
2 – Stop motor when setpoint is reached.
3 – Electronic brake when setpoint is reached.
4 – Stop motor and hardware brake when position is reached.

53

5 – Continue to seek position while distance to the position setpoint is less than the position
setpoint threshold. Maintain constant power while distance to setpoint is less than the threshold.
6 – Continue to seek position while the distance to the position setpoint is less than the position
setpoint threshold. Apply electronic brake while the distance to setpoint is less than the
threshold. (Available on firmware version 8.8 or later)

54

14.25 Rotary Actuators - System Configuration 2 Packet ‘D’

14.25.1 Set Packet Type
‘D’ (0x44)

14.25.2 Request type
‘d’ (0x64)

14.25.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.25.4 Function
The second of the two main system configuration packets, the payload contains tuning parameters
for the inner PID control loop as well as parameters that provide for control over some of the more
nuanced behaviors of the feedback control system.

14.25.5 Payload Length
42

14.25.6 Payload Structure

Rotary – System Configuration 2 (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16 17:20

Data
Type

char float

(Non-Volatile)

float

(Non-Volatile)

Float

(Non-Volatile)

float

(Non-Volatile)

float

(Non-Volatile)

Field Packet
Type:
‘D’

Proportional Gain
for velocity control
loop

Integral Gain for
velocity control loop

Derivative Gain for
velocity control loop

Velocity
Integrator
maximum value

Velocity
Derivative clamp
value

Rotary – System Configuration 2 (Table 2 of 2)

Payload
Index

21:24 25:28 29:32 33:36 37:40 41

Data
Type

uint32

(Non-
Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint32

(Non-Volatile)

uint8

(Non-Volatile)

Field PID-Scale
position

PID-Scale velocity Reserved /
Unused

Position-Control
target velocity

Position setpoint
threshold

Position setpoint
stop behavior

55

14.25.7 Field Descriptions

14.25.7.1 Packet Type
The byte indicating the packet type: ‘D’ (0x44)

14.25.7.2 Proportional Gain for Velocity Control Loop
Tunes the proportional response of the velocity control PID loop.

14.25.7.3 Integral Gain for Velocity Control Loop
Tunes the integral response of the velocity control PID loop.

14.25.7.4 Derivative Gain for Velocity Control Loop
Tunes the derivative response of the velocity control PID loop.

14.25.7.5 Velocity Integrator Maximum Value
Sets an upper limit to how large the integrator can grow. Generally, use values in the range: 0-1.0.

14.25.7.6 Derivative Clamp Value
Sets an upper limit for the contribution of the derivative term to the overall PID system output.

14.25.7.7 PID Scale Position
When the actuator is issued a position setpoint, this parameter controls how sensitive the PID
controller is to the position error. This is a unitless quantity which controls how quickly the
position control loop will saturate at its highest value (the position control target velocity) for a
given position error.

14.25.7.8 PID Scale Velocity
When the actuator is issued a position or velocity setpoint, this parameter controls how sensitive
the PID controller is to the velocity error. This is a unitless quantity which controls how quickly
the velocity will saturate at its highest value (100% motor duty cycle) for a given velocity error.

14.25.7.9 Reserved/Unused
The value has no effect on the system.

14.25.7.10 Position Target Velocity
When the actuator is issued a position setpoint command, this is the maximum velocity (in
millidegreees per minute) that the control loop will use before slowing down as the shaft nears the
setpoint. When motion profiling is enabled, this value is also used as the speed limit for position-
to-positon profiles.

14.25.7.11 Position Setpoint Threshold
The position setpoint threshold is the allowable error between the position setpoint and the shaft
rotational position at which point the system will assume the setpoint has been reached and will
then act according to the setpoint stop behavior (see field below). This field is in millidegrees.

14.25.7.12 Setpoint stop behavior
Indicates actuator behavior once the shaft reaches the setpoint (less the setpoint threshold).
Use the following enumerations:
0 – Continue to seek position until the motor is turned off or a new command is issued.
1 – Stop tracking position when the setpoint is reached.
2 – Stop motor when setpoint is reached.
3 – Electronic brake when setpoint is reached.
4 – Stop motor and hardware brake when position is reached.

56

5 – Continue to seek position while distance to the position setpoint is less than the position
setpoint threshold. Maintain constant power while distance to setpoint is less than the threshold.
6 – Continue to seek position while the distance to the position setpoint is less than the position
setpoint threshold. Apply electronic brake while the distance to setpoint is less than the
threshold. (Available on firmware version 8.8 or later)

57

14.26 Linear Actuators – System Configuration 3 Packet 0xA6

14.26.1 Set Packet Type
0xA6

14.26.2 Request Type
0xA7

14.26.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.26.4 Function
This packet is used to configure various actuator functionality related to motion control. This packet
is available in firmware versions 5.4 and later.

14.26.5 Payload Length
39

14.26.6 Payload Structure
Linear – System Configuration 3 (Table 1 of 2)

Payload
Index

0 1 2 3:6 7:10 11:14

Data
Type

char uint8 uint8

uint32 uint32 uint32

Field Packet
Type:
0xA6

Enable velocity
feed-forward
control

Enable PID
voltage gain
scaling

PID / feed-forward
reference voltage

Velocity feed-forward
coefficient

Reserved #1

Linear – System Configuration 3 (Table 2 of 2)

Payload
Index

15:18 19:22 23:26 27:30 31:34 35:38

Data
Type

uint32 uint32 uint32 uint32 uint32 uint32

Field Reserved #2 Reserved #3 Reserved #4 Reserved #5 Reserved #6 Reserved #7

14.26.7 Field Descriptions

14.26.7.1 Packet Type
The byte specifying the command: 0xA6

14.26.7.2 Enable velocity feed-forward control
When set to 1, the PID system will use feed-forward control to enhance performance and reduce
overshoot. In order to use this feature effectively, the feed-forward coefficient and reference
voltage must be set correctly.

58

14.26.7.3 Enable PID voltage gain scaling
When set to 1, the system will automatically scale PID sensitivity based on the ratio between the
measured actuator input voltage and the programmed reference voltage. This will make position
and velocity control performance more consistent across varying actuator input voltages. PID
system sensitivity will not be increased above 200% or decreased below 50% of the original value.

14.26.7.4 PID / feed-forward reference voltage
Sets the reference voltage for the PID system, in millivolts. This is assumed to be the operating
voltage of the actuator and is used when scaling PID system values to compensate for changes in
input voltage.

14.26.7.5 Velocity feed-forward coefficient
This coefficient sets the scaling factor for the velocity feed-forward control system, in units of milli-
motor match counts per output shaft inches per minute. Feed-forward control works by pre-
calculating the expected match value required to drive the motor at a specified speed. This
significantly reduces the amount of work the PID loop has to do to maintain a velocity or position
setpoint, which increases system performance. A value of 20000 in this field would set an initial
motor match value of 400 when a velocity of 20 inches per minute is commanded. The current
motor match value is available in the System Info 2 packet for reference when calibrating this field.
This field is internally scaled in a manner inversely proportional to the ratio of system input voltage
to reference voltage. This value should therefore be calibrated while the actuator is operating
with a supply voltage near the programmed reference voltage. Feed forward control will be
disabled when the actuator supply voltage is below a low-voltage cutoff threshold (typically
around 9V).
Note: This field should be set to a reasonable value from the factory. If it is necessary to change
this value, it is recommended to start at a small value, which should be increased slowly, testing
system performance after every change. Setting this value to an excessively large number can
cause motor control instability, including severe position and velocity control overshoot, which can
cause system damage.

14.26.7.6 Reserved #1-#7
These fields do not currently affect actuator operation. However, they should be set to 0 to
ensure compatibility with future firmware revisions.

59

14.27 Rotary Actuators – System Configuration 3 Packet 0xA6

14.27.1 Set Packet Type
0xA6

14.27.2 Request Type
0xA7

14.27.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.27.4 Function
This packet is used to configure various actuator functionality related to motion control. This packet
is available in firmware versions 5.4 and later.

14.27.5 Payload Length
39

14.27.6 Payload Structure
Rotary – System Configuration 3 (Table 1 of 2)

Payload
Index

0 1 2 3:6 7:10 11:14

Data
Type

char uint8 uint8

uint32 uint32 uint32

Field Packet
Type:
0xA6

Enable velocity
feed-forward
control

Enable PID
voltage gain
scaling

PID / feed-forward
reference voltage

Velocity feed-forward
coefficient

Reserved #1

Rotary – System Configuration 3 (Table 2 of 2)

Payload
Index

15:18 19:22 23:26 27:30 31:34 35:38

Data
Type

uint32 uint32 uint32 uint32 uint32 uint32

Field Reserved #2 Reserved #3 Reserved #4 Reserved #5 Reserved #6 Reserved #7

14.27.7 Field Descriptions

14.27.7.1 Packet Type
The byte specifying the command: 0xA6

14.27.7.2 Enable velocity feed-forward control
When set to 1, the PID system will use feed-forward control to enhance performance and reduce
overshoot. In order to use this feature effectively, the feed-forward coefficient and reference
voltage must be set correctly.

60

14.27.7.3 Enable PID voltage gain scaling
When set to 1, the system will automatically scale PID sensitivity based on the ratio between the
measured actuator input voltage and the programmed reference voltage. This will make position
and velocity control performance more consistent across varying actuator input voltages. PID
system sensitivity will not be increased above 200% or decreased below 50% of the original value.

14.27.7.4 PID / feed-forward reference voltage
Sets the reference voltage for the PID system, in millivolts. This is assumed to be the operating
voltage of the actuator and is used when scaling PID system values to compensate for changes in
input voltage.

14.27.7.5 Velocity feed-forward coefficient
This coefficient sets the scaling factor for the velocity feed-forward control system, in units of milli-
motor match counts per output shaft RPM. Feed-forward control works by pre-calculating the
expected match value required to drive the motor at a specified speed. This significantly reduces
the amount of work the PID loop has to do to maintain a velocity or position setpoint, which
increases system performance. A value of 20000 in this field would set an initial motor match value
of 400 when a velocity of 20 RPM is commanded. The current motor match value is available in
the System Info 2 packet for reference when calibrating this field. This field is internally scaled in a
manner inversely proportional to the ratio of system input voltage to reference voltage. This value
should therefore be calibrated while the actuator is operating with a supply voltage near the
programmed reference voltage. Feed forward control will be disabled when the actuator supply
voltage is below a low-voltage cutoff threshold (typically around 9V).
Note: This field should be set to a reasonable value from the factory. If it is necessary to change
this value, it is recommended to start at a small value, which should be increased slowly, testing
system performance after every change. Setting this value to an excessively large number can
cause motor control instability, including severe position and velocity control overshoot, which can
cause system damage.

14.27.7.6 Reserved #1-#7
These fields do not currently affect actuator operation. However, they should be set to 0 to
ensure compatibility with future firmware revisions.

61

14.28 Valve Endpoints Configuration Packet 0x80 (Ball Valve Actuators Only)

14.28.1 Set Packet Type
0x80

14.28.2 Request Type
 0x81

14.28.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.28.4 Function
For rotary actuators configured with a ball valve, this packet configures the positions (e.g. 0°, 90°)
that the valve will toggle between on power cycle.

14.28.5 Payload Length
9

14.28.6 Payload Structure

14.28.7 Field Descriptions

14.28.7.1 Packet Type
The byte indicating the packet type: 0x80(set), 0x81 (request)

14.28.7.2 Valve Low Position
The first position, in millidegrees, that the valve will travel to upon powering up.

14.28.7.3 Valve High Position
The second position, in millidegrees, that the valve will travel to after reaching the first position.

Valve Endpoints Configuration

Payload
Index

0 1:4 5:8

Data
Type

char uint32

(Non-Volatile)

uint32

(Non-Volatile)

Field Packet Type:
0x80

Valve Low Position Valve High Position

62

14.29 Linear Actuators – Velocity Setpoint Configuration Packet ‘W’

14.29.1 Set Packet Type
‘W’ (0x57)

14.29.2 Request type
‘w’ (0x77)

14.29.3 Volatility
All values are volatile and will change according to conditions.

14.29.4 Function
If the motor is on, the control loop will be configured to move the actuator at the set velocity. The
characteristics of the movement are determined by the control loop gains, control loop scales, and
sampling settings. The actuator will maintain the velocity until it receives a turn off command, a
different setpoint command, or the endpoints are reached.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.29.5 Payload Length
5

14.29.6 Payload Structure

14.29.7 Field Descriptions

14.29.7.1 Packet Type
The byte specifying the command: ‘W’ (0x57)

14.29.7.2 Velocity Setpoint
Specifies the speed, in milli-inch per minute, at which the actuator will move. Positive values will
cause the actuator to extend. Negative values will cause the shaft to retract.

Linear – Velocity Setpoint Configuration

Payload
Index

0 1:4

Data
Type

char int32

Field Packet
Type: ‘W’

Velocity Setpoint

63

14.30 Rotary Actuators – Velocity Setpoint Configuration Packet ‘W’

14.30.1 Set Packet Type
‘W’ (0x57)

14.30.2 Request type
‘w’ (0x77)

14.30.3 Volatility
All values are volatile and will change according to conditions.

14.30.4 Function
If the motor is on, the control loop will be configured to move the actuator at the set velocity. The
characteristics of the movement are determined by the control loop gains, control loop scales, and
sampling settings. The actuator will maintain the velocity until it receives a turn off command, a
different setpoint command, or the endpoints are reached.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost.

14.30.5 Payload Length
5

14.30.6 Payload Structure

14.30.7 Field Descriptions

14.30.7.1 Packet Type
The byte specifying the command: ‘W’ (0x57)

14.30.7.2 Velocity Setpoint
Specifies the speed, in millidegrees per minute, at which the actuator will move. Positive values
will cause the shaft to spin forward. Negative values will cause the shaft to spin in reverse. Note
that due to the unit used, the maximum speed that can be sent using this packet is approximately
5965 RPM. If it is necessary to command higher speeds, the Velocity Setpoint Extended packet
should be used instead.

Rotary - Velocity Setpoint Configuration

Payload
Index

0 1:4

Data
Type

char int32

Field Packet
Type: ‘W’

Velocity Setpoint

64

14.31 Linear Actuators – Velocity Setpoint Extended Configuration Packet 0xB6

14.31.1 Set Packet Type
0xB6

14.31.2 Request type
0xB7

14.31.3 Volatility
All values are volatile and will change according to conditions.

14.31.4 Function
If the motor is on, the control loop will be configured to move the actuator at the set velocity. The
characteristics of the movement are determined by the control loop gains, control loop scales, and
sampling settings. The actuator will maintain the velocity until it receives a turn off command, a
different setpoint command, or the endpoints are reached.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost. This packet is available in firmware versions 6.7 and later.

14.31.5 Payload Length
14

14.31.6 Payload Structure

14.31.7 Field Descriptions

14.31.7.1 Packet Type
The byte specifying the command: 0xB6

14.31.7.2 Velocity Setpoint
Specifies the speed, in milli-inch per minute, at which the actuator will move. Positive values will
cause the actuator to extend. Negative values will cause the shaft to retract.

14.31.7.3 Reserved #1
This field currently has no effect on system operation.

14.31.7.4 Reserved #2
This field currently has no effect on system operation.

14.31.7.5 Reserved #3
This field currently has no effect on system operation.

Linear - Velocity Setpoint Extended Configuration

Payload
Index

0 1:4 5:8 9:12 13

Data
Type

char int32

int32 int32 uint8

Field Packet Type:
0xB6

Velocity Setpoint Reserved #1 Reserved #2 Reserved #3

65

14.32 Rotary Actuators – Velocity Setpoint Extended Configuration Packet 0xB6

14.32.1 Set Packet Type
0xB6

14.32.2 Request type
0xB7

14.32.3 Volatility
All values are volatile and will change according to conditions.

14.32.4 Function
If the motor is on, the control loop will be configured to move the actuator at the set velocity. The
characteristics of the movement are determined by the control loop gains, control loop scales, and
sampling settings. The actuator will maintain the velocity until it receives a turn off command, a
different setpoint command, or the endpoints are reached.
Action will take effect immediately if the motor is on. Command must be issued when the motor is
on or the values will be lost. This packet is available in firmware versions 6.7 and later.

14.32.5 Payload Length
14

14.32.6 Payload Structure

14.32.7 Field Descriptions

14.32.7.1 Packet Type
The byte specifying the command: 0xB6

14.32.7.2 Velocity Setpoint
Specifies the speed, in millirevolutions per minute, at which the actuator will move. Positive values
will cause the shaft to spin forward. Negative values will cause the shaft to spin in reverse.

14.32.7.3 Reserved #1
This field currently has no effect on system operation.

14.32.7.4 Reserved #2
This field currently has no effect on system operation.

14.32.7.5 Reserved #3
This field currently has no effect on system operation.

Rotary - Velocity Setpoint Extended Configuration

Payload
Index

0 1:4 5:8 9:12 13

Data
Type

char int32

int32 int32 uint8

Field Packet Type:
0xB6

Velocity Setpoint Reserved #1 Reserved #2 Reserved #3

66

14.33 Linear Actuators – Motion Profile Configuration Packet 0x9A

14.33.1 Set Packet Type
0x9A

14.33.2 Request Type
0x9B

14.33.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.33.4 Function
The motion profile configuration packet is used to enable or disable the actuator’s built-in motion
profile generator, and to set motion limits used by the profile generator. When the profile
generator is enabled, position setpoint and velocity setpoint commands will be executed using the
profile generator instead of immediately tracking the specified setpoint. The velocity from the
System Configuration 2 packet will be used as the profile speed limit.

14.33.5 Payload Length
47

14.33.6 Payload Structure

Linear – Motion Profile Configuration (Table 1 of 2)

Payload
Index

0 1 2 3:6 7:10 11:14 15:18

Data
Type

char uint8

uint8 uint32 uint32 uint32 uint32

Field Packet
Type:
0x9A

Position
Profile
Mode

Velocity
Profile
Mode

Position Profile
Max
Acceleration

Position Profile
Max Jerk

Velocity Profile
Max Acceleration

Reserved #1

Linear – Motion Profile Configuration (Table 2 of 2)

Payload
Index

19:22 23:26 27:30 31:34 35:38 39:42 43:46

Data
Type

uint32 uint32 uint32 float uint32 uint32 uint32

Field Replanning
Rate

Inertia
Compensation

Inertia
Compensation
Threshold

Gain
Compensation
Factor

Profile
Completion
Threshold

Minimum
Position
Delta

Reserved
#2

14.33.7 Field Descriptions

14.33.7.1 Packet Type
The byte specifying the command: 0x9A

14.33.7.2 Position Profile Mode
Specifies the mode for the position profile generator (used when a position setpoint is specified):

67

0 – No profile (Use direct PID position control)
2 – Use 2nd order (trapezoidal) position profile
3 – Use 3rd order (S-curve) position profile (currently unimplemented)
All other values are undefined and are currently equivalent to specifying 0.

14.33.7.3 Velocity Profile Mode
Specifies the mode for the velocity profile generator (used when a velocity setpoint is specified):
0 – No Profile (Use direct PID velocity control)
2 – Use 2nd order (trapezoidal) velocity profile
All other values are undefined and are currently equivalent to specifying 0.

14.33.7.4 Position Profile Max Acceleration
Specifies the maximum acceleration which can be used during a position profile, in milli-inches per
minute per second. This acceleration limit will apply in both the positive and negative directions of
motion.

14.33.7.5 Position Profile Max Jerk
Specifies the maximum jerk which can be used during a position profile, in milli-inches per minute
per second2. This jerk limit will be applied in both the positive and negative directions of motion.

14.33.7.6 Velocity Profile Max Acceleration
Specifies the maximum acceleration which can be used during a velocity profile, in milli-inches per
minute per second. This acceleration limit will apply in both the positive and negative directions of
motion.

14.33.7.7 Reserved #1
This field currently has no effect on system operation.

14.33.7.8 Replanning Rate
The motion profile subsystem will automatically update its profile plan at regular intervals in order
to account for unexpected changes in load and to reduce accumulation of error. This field
specifies the time, in milliseconds, between profile updates. The profile update operation happens
transparently and without user intervention; for most applications, you should not have to change
this value from the default.

14.33.7.9 Inertia Compensation
Without correction, the profile generator will lag behind the physical motion of the actuator shaft
by several hundred milliseconds due to inertia in the system. This field specifies the value, in
milliseconds, to offset the profile generator in order to align the profile generator with the
actuator output. The default value should be adequate for most applications, but setting higher
acceleration values or applying a large load to the actuator may require changing the
compensation value for maximum performance.

14.33.7.10 Inertia Compensation Threshold
The inertia compensation is automatically disabled near the end of the profile. This field allows
setting the amount of time remaining (in milliseconds) in the profile before the inertia
compensation is disabled. The default value should be appropriate for almost all applications.

14.33.7.11 Gain Compensation Factor
To ensure that the position PID control loop tracks the position profile as closely as possible, the
Position P-gain is multiplied by this scalar when in position profile mode. The default value should
be appropriate for most applications.

68

14.33.7.12 Profile Completion Threshold
This value specifies the time remaining in the profile, in milliseconds, before the profile generator
is disabled and the control system is switched to position PID mode. This allows the unit to
smoothly reach its final position. The value used here will depend largely on the value for
acceleration set in the Position Profile Max Acceleration field above – larger acceleration values
will require a smaller time for best results. Setting the threshold time too small may result in the
actuator never reaching its target position.

14.33.7.13 Minimum Position Delta
This field specifies the minimum position difference (in milli-inches) required between the current
actuator position and the position setpoint in order to trigger a profiled position move. Setpoint
changes less than this amount will be performed using the standard PID motion control system.
Set this to 0 to always use the motion profiler.

14.33.7.14 Reserved #2
This field has no effect on system operation.

69

14.34 Rotary Actuators – Motion Profile Configuration Packet 0x9A

14.34.1 Set Packet Type
0x9A

14.34.2 Request Type
0x9B

14.34.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.34.4 Function
The motion profile configuration packet is used to enable or disable the actuator’s built-in motion
profile generator, and to set motion limits used by the profile generator. When the profile
generator is enabled, position setpoint and velocity setpoint commands will be executed using the
profile generator instead of immediately tracking the specified setpoint. The velocity from the
System Configuration 2 packet will be used as the profile speed limit.

14.34.5 Payload Length
47

14.34.6 Payload Structure

Rotary – Motion Profile Configuration (Table 1 of 2)

Payload
Index

0 1 2 3:6 7:10 11:14 15:18

Data
Type

char uint8

uint8 uint32 uint32 uint32 uint32

Field Packet
Type:
0x9A

Position
Profile
Mode

Velocity
Profile
Mode

Position Profile
Max
Acceleration

Position Profile
Max Jerk

Velocity Profile
Max Acceleration

Reserved #1

Rotary – Motion Profile Configuration (Table 2 of 2)

Payload
Index

19:22 23:26 27:30 31:34 35:38 39:42 43:46

Data
Type

uint32 uint32 uint32 float uint32 uint32 uint32

Field Replanning
Rate

Inertia
Compensation

Inertia
Compensation
Threshold

Gain
Compensation
Factor

Profile
Completion
Threshold

Minimum
Position
Delta

Reserved
#2

14.34.7 Field Descriptions

14.34.7.1 Packet Type
The byte specifying the command: 0x9A

70

14.34.7.2 Position Profile Mode
Specifies the mode for the position profile generator (used when a position setpoint is specified):
0 – No profile (Use direct PID position control)
2 – Use 2nd order (trapezoidal) position profile
3 – Use 3rd order (S-curve) position profile (currently unimplemented)
All other values are undefined and are currently equivalent to specifying 0.

14.34.7.3 Velocity Profile Mode
Specifies the mode for the velocity profile generator (used when a velocity setpoint is specified):
0 – No Profile (Use direct PID velocity control)
2 – Use 2nd order (trapezoidal) velocity profile
All other values are undefined and are currently equivalent to specifying 0.

14.34.7.4 Position Profile Max Acceleration
Specifies the maximum acceleration which can be used during a position profile, in milli-degrees
per second2. This acceleration limit will apply in both the positive and negative directions of
motion.

14.34.7.5 Position Profile Max Jerk
Specifies the maximum jerk which can be used during a position profile, in milli-degrees per
second3. This jerk limit will be applied in both the positive and negative directions of motion.

14.34.7.6 Velocity Profile Max Acceleration
Specifies the maximum acceleration which can be used during a velocity profile, in milli-degrees
per second2. This acceleration limit will apply in both the positive and negative directions of
motion.

14.34.7.7 Reserved #1
This field currently has no effect on system operation.

14.34.7.8 Replanning Rate
The motion profile subsystem will automatically update its profile plan at regular intervals in order
to account for unexpected changes in load and to reduce accumulation of error. This field
specifies the time, in milliseconds, between profile updates. The profile update operation happens
transparently and without user intervention; for most applications, you should not have to change
this value from the default.

14.34.7.9 Inertia Compensation
Without correction, the profile generator will lag behind the physical motion of the actuator shaft
by several hundred milliseconds due to inertia in the system. This field specifies the value, in
milliseconds, to offset the profile generator in order to align the profile generator with the
actuator output. The default value should be adequate for most applications, but setting higher
acceleration values or applying a large load to the actuator may require changing the
compensation value for maximum performance.

14.34.7.10 Inertia Compensation Threshold
The inertia compensation is automatically disabled near the end of the profile. This field allows
setting the amount of time remaining (in milliseconds) in the profile before the inertia
compensation is disabled. The default value should be appropriate for almost all applications.

71

14.34.7.11 Gain Compensation Factor
To ensure that the position PID control loop tracks the position profile as closely as possible, the
Position P-gain is multiplied by this scalar when in position profile mode. The default value should
be appropriate for most applications.

14.34.7.12 Profile Completion Threshold
This value specifies the time remaining in the profile, in milliseconds, before the profile generator
is disabled and the control system is switched to position PID mode. This allows the unit to
smoothly reach its final position. The value used here will depend largely on the value for
acceleration set in the Position Profile Max Acceleration field above – larger acceleration values
will require a smaller time for best results. Setting the threshold

14.34.7.13 Minimum Position Delta
This field specifies the minimum position difference (in milli-degrees) required between the
current actuator position and the position setpoint in order to trigger a profiled position move.
Setpoint changes less than this amount will be performed using the standard PID motion control
system. Set this to 0 to always use the motion profiler.

14.34.7.14 Reserved #2
This field has no effect on system operation.

72

14.35 Rotary Actuators – Load Dump Configuration Packet 0xA4

14.35.1 Set Packet Type
0xA4

14.35.2 Request Type
0xA5

14.35.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle.

14.35.4 Function
The load dump configuration packet is used to enable, disable, and configure the actuator’s internal
resistive load bank. This load bank is used to dissipate excess power when the actuator is driven by
an applied load. The load bank can either be driven manually, or by using PID control to maintain a
minimum current into the actuator.

14.35.5 Payload Length
42

14.35.6 Payload Structure

Rotary – Load Dump Configuration (Table 1 of 2)

Payload
Index

0 1 2:5 6:9 10:13 14:17 18:21

Data
Type

char uint8

uint32 float float float float

Field Packet
Type:
0xA4

Load
Dump
Mode

Load Dump
Match
Value

Load Dump PID
Control P-gain

Load Dump PID
Control I-gain

Load Dump PID
Control D-gain

Load Dump PID
Control Max
Error

Rotary – Load Dump Configuration (Table 2 of 2)

Payload
Index

22:25 26:29 30:33 34:37 38 39 40:41

Data
Type

float float uint32 uint32 uint8 uint8 uint16

Field Load Dump
PID Control
Max I-term

Load Dump
PID Control
Max D-term

Load Dump PID
Control Minimum
Velocity Threshold

Load Dump PID
Control Target
Current

Load Dump
Load
Direction

Reserved
#2

Reserved
#3

14.35.7 Field Descriptions

14.35.7.1 Packet Type
The byte specifying the command: 0xA4

73

14.35.7.2 Load Dump Mode
This field selects the mode of operation for the load dump system according to the following
enumeration:
0 – Load Dump Disabled: The load dump system is not enabled and has no effect on actuator
operation.
1 – Manual: The load dump system is manually controlled. The proportion of motor power
diverted to the load bank is set using the “Load Dump Match Value” field. Values from 0 to 2250
represent full power and no power, respectively. Extended operation of the load dump in full
power mode under certain mechanical load conditions may cause damage to the actuator.
The PID settings have no effect in this mode.
2 –Automatic: The load dump system is automatically controlled by the actuator in this mode.
The load dump PID system attempts to maintain a minimum system current whenever the
actuator shaft velocity is above the minimum velocity threshold. As the actuator system current
rises above the target current, the load dump power will ramp down. As the actuator system
current falls below the target current, the load dump power will ramp up to attempt to maintain
the target current. The P-, I-, D- gains and limits function similarly to the PID system used for
actuator motor control.
The Load Dump Match Value field has no effect in Automatic mode.
All other values for the Load Dump Field are undefined.

14.35.7.3 Load Dump Match Value
In manual operation mode, this field sets the proportion of power diverted from the motor to the
actuator’s internal resistive load bank. 0 represents full power, and 1000 represents no power.

14.35.7.4 Load Dump PID Control P-gain
Proportional gain for the load dump PID control loop.

14.35.7.5 Load Dump PID Control I-gain
Integral gain for the load dump PID control loop.

14.35.7.6 Load Dump PID Control D-gain
Derivative gain for the load dump PID control loop.

14.35.7.7 Load Dump PID Control Max Error
Maximum error term for the load dump PID control loop. Increasing this value decreases the
overall responsiveness and sensitivity of the control loop.

14.35.7.8 Load Dump PID Control Max I-term
Maximum I-term for the load dump PID control loop. This value limits the amount that the
integrator can wind up.

14.35.7.9 Load Dump PID Control Max D-term
Maximum D-term for the load dump PID control loop. This value limits the response of the control
loop to large step changes in input.

14.35.7.10 Load Dump PID Control Minimum Velocity Threshold
Sets the minimum velocity of the actuator (in milli-RPM) at which the automatic load dump control
takes effect. Below this velocity, the automatic load dump control does not operate.

74

14.35.7.11 Load Dump PID Control Target Current
Sets the target current for the automatic load dump control system. The system will attempt to
maintain this current if the actuator’s system current drops below this value while operating above
the minimum velocity threshold.

14.35.7.12 Load Dump Load Direction
In automatic mode, determines the direction of motor rotation in which the load dump will
operate according to the following enumeration:
0 – Load dump operates in both directions
1 – Load dump operates in forward direction only
2 – Load dump operates in reverse direction only

All other values for this field are currently undefined.

This field has no effect in manual load dump operation mode. The load dump circuitry will be
disabled when the motor is not rotating in the specified direction.

14.35.7.13 Reserved #2
This field is not currently implemented and has no effect on actuator operation.

14.35.7.14 Reserved #3
This field is not currently implemented and has no effect on actuator operation.

75

14.36 Rotary Actuators – Stall Detection Configuration Packet 0xA8

14.36.1 Set Packet Type
0xA8

14.36.2 Request Type
0xA9

14.36.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.36.4 Function
The stall detection configuration packet is used to configure the actuator’s internal stall detection
algorithm. The stall detection algorithm helps to prevent damage to the actuator’s motor drive
circuits in a stall condition by adjusting the motor current limits.

14.36.5 Payload Length
20

Rotary – Stall Detection Configuration

Payload
Index

0 1 2:5 6:9 10 11 12:15 16 17 18:19

Data
Type

char bool

uint32 uint32 uint8 uint8 uint32 uint8 uint8 int16

Field Packet
Type:
0xA8

Stall
Detection
Enable

Stall
Detection
Current
Threshold

Stall
Detection
Timeout

Stall
Detection
Duty Cycle

Stall
Detection
Current
Reduction

Stall
Detection
Speed
Threshold

Stall
Detection
Options

Stall
Count
Fault
Threshold

Reserved

14.36.6 Field Descriptions

14.36.6.1 Packet Type
The byte specifying the command: 0xA4.

14.36.6.2 Stall Detection Enable
Enables or disables the stall detection subsystem. 0 = disabled, 1 = enabled.

14.36.6.3 Stall Detection Current Threshold
Specifies the minimum board current in mA before a stall is considered to have occurred.

14.36.6.4 Stall Detection Timeout
Specifies the amount of time in milliseconds the actuator must exceed the detection current limit
before a stall is considered to have occurred.

14.36.6.5 Stall Detection Duty Cycle
Specifies the ratio of time (0-100%) the actuator will spend in the full current vs reduced current
state when a stall is detected.

76

14.36.6.6 Stall Detection Current Reduction
Specifies the percentage by which the actuator’s motor current limit will be reduced when a stall is
detected.

14.36.6.7 Stall Detection Speed Threshold
Specifies the maximum shaft velocity (in milli-degrees per second) of the actuator, above which
the stall detection system is no longer active.

14.36.6.8 Stall Detection Options
Added in Firmware version 4.9.
Specifies additional options related to stall detection, as defined below:

Bit 0 – Stall Fault: If set, a fault will be tripped when the unit has stalled the number of times set in
the Stall Count Fault Threshold field.
Bit 1 – Stall Detection Use Motor Current: If set, the stall detection current threshold will be scaled
down as voltage increases and up as voltage decreases relative to the reference voltage. This
feature is only useful on actuators with motor current feedback. Added in Firmware version 6.3.
Bit 2 – Stall Detection Coast: If set, the motor will coast instead of reducing the motor current limit
when a stall occurs. Added in Firmware version 6.3.

14.36.6.9 Stall Count Fault Threshold
Added in Firmware version 4.9.
Specifies the number of stalls which must occur in order for a stall fault to be tripped. The value in
this field is one less than the number of stalls to be detected. If this field is set to 0, the fault will
be tripped immediately after the first stall is detected. If this field is set to 1, the fault will be
tripped immediately after the second stall is detected, and so on. If the stall fault bit is not set in
the Stall Detection Options field, this value will have no effect. The fault counter is reset whenever
a fault is tripped or the motor is started.

14.36.6.10 Reserved
This field is not currently implemented and has no effect on system operation.

77

14.37 Linear Actuators – Stall Detection Configuration Packet 0xA8

14.37.1 Set Packet Type
0xA8

14.37.2 Request Type
0xA9

14.37.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.37.4 Function
The stall detection configuration packet is used to configure the actuator’s internal stall detection
algorithm. The stall detection algorithm helps to prevent damage to the actuator’s motor drive
circuits in a stall condition by adjusting the motor current limits.

14.37.5 Payload Length
20

Linear – Stall Detection Configuration

Payload
Index

0 1 2:5 6:9 10 11 12:15 16 17 18:19

Data
Type

char bool

uint32 uint32 uint8 uint8 uint32 uint8 uint8 int16

Field Packet
Type:
0xA8

Stall
Detection
Enable

Stall
Detection
Current
Threshold

Stall
Detection
Timeout

Stall
Detection
Duty Cycle

Stall
Detection
Current
Reduction

Stall
Detection
Speed
Threshold

Stall
Detection
Options

Stall
Count
Fault
Threshold

Reserved

14.37.6 Field Descriptions

14.37.6.1 Packet Type
The byte specifying the command: 0xA4.

14.37.6.2 Stall Detection Enable
Enables or disables the stall detection subsystem. 0 = disabled, 1 = enabled.

14.37.6.3 Stall Detection Current Threshold
Specifies the minimum board current in mA before a stall is considered to have occurred.

14.37.6.4 Stall Detection Timeout
Specifies the amount of time in milliseconds the actuator must exceed the detection current limit
before a stall is considered to have occurred.

14.37.6.5 Stall Detection Duty Cycle
Specifies the ratio of time (0-100%) the actuator will spend in the full current vs reduced current
state when a stall is detected.

78

14.37.6.6 Stall Detection Current Reduction
Specifies the percentage by which the actuator’s motor current limit will be reduced when a stall is
detected.

14.37.6.7 Stall Detection Speed Threshold
Specifies the maximum shaft velocity (in milli-inches per minute) of the actuator, above which the
stall detection system is no longer active.

14.37.6.8 Stall Detection Options
Added in Firmware version 4.9.
Specifies additional options related to stall detection, as defined below:

Bit 0 – Stall Fault: If set, a fault will be tripped when the unit has stalled the number of times set in
the Stall Count Fault Threshold field.

14.37.6.9 Stall Count Fault Threshold
Added in Firmware version 4.9.
Specifies the number of stalls which must occur in order for a stall fault to be tripped. The value in
this field is one less than the number of stalls to be detected. If this field is set to 0, the fault will
be tripped immediately after the first stall is detected. If this field is set to 1, the fault will be
tripped immediately after the second stall is detected, and so on. If the stall fault bit is not set in
the Stall Detection Options field, this value will have no effect. The fault counter is reset whenever
a fault is tripped or the motor is started.

14.37.6.10 Reserved
This field is not currently implemented and has no effect on system operation.

79

14.38 Rotary Actuators – Gain Scheduling Configuration Packet 0xAB

14.38.1 Set Packet Type
0xAB

14.38.2 Request Type
0xAC

14.38.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.38.4 Function
The gain scheduling configuration packet is used to configure the actuator’s PID gain scheduler. This
system is used to automatically adjust the actuator’s PID gain values depending on how close the
actuator is to the desired setpoint. This allows the actuator to respond quickly when making a large
setpoint change, while still remaining stable while tracking a constant setpoint.

14.38.5 Payload Length
44

14.38.6 Payload Structure

Rotary – Gain Scheduling Configuration (Table 1 of 2)

Payload
Index

0 1 2 3 4:7 8:11 12:15 16:19

Data
Type

char bool uint8

uint8 float float float float

Field Packet
Type:
0xAB

Gain
Scheduling
Enable

Reserved #1 Gain
Scheduling
Mode

Position-
Dependent
Position Gain
Scale Factor

Position-
Dependent
Velocity Gain
Scale Factor

Velocity-
Dependent
Position Gain
Scale Factor

Velocity-
Dependent
Velocity
Gain Scale
Factor

Rotary – Gain Scheduling Configuration (Table 2 of 2)

Payload
Index

20:23 24:27 28:31 32:35 36:39 40:43

Data
Type

uint32 int32 int32 int32 int32 uint32

Field Reserved
#2

Position-
Dependent Position
Gain Scaling
Threshold

Position-
Dependent Velocity
Gain Scaling
Threshold

Velocity-
Dependent Position
Gain Scaling
Threshold

Velocity-
Dependent Velocity
Gain Scaling
Threshold

Reserved
#3

14.38.7 Field Descriptions

14.38.7.1 Packet Type
The byte specifying the command: 0xAB.

80

14.38.7.2 Gain Scheduling Enable
If set to 1, the gain scheduling system will be enabled. If set to 0, the gain scheduling system will
be disabled and the following fields will have no effect on system operation.

14.38.7.3 Reserved #1
This field does not currently affect actuator operation. However, it should be set to 0 to ensure
compatibility with future firmware revisions.

14.38.7.4 Gain Scheduling Mode
This field specifies which gain scheduling modes are enabled, depending on which bits are set:
Bit 0: Enable position-dependent position gain scheduling
Bit 1: Enable position-dependent velocity gain scheduling
Bit 2: Enable velocity-dependent position gain scheduling
Bit 3: Enable velocity-dependent velocity gain scheduling
Bit 4-7: Reserved

Note that enabling multiple gain scheduling options which affect the same gain value (e.g.
position-dependent position gain scheduling and velocity-dependent position gain scheduling) may
cause unexpected interactions. Operating the actuator in this manner should be done with
caution.

14.38.7.5 Position-Dependent Position Gain Scale Factor
Specifies the amount by which the position p-gain is reduced or increased when the actuator is
near the specified position setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and position-dependent position gain scheduling is
enabled. This field has no effect in velocity control mode.

14.38.7.6 Position-Dependent Velocity Gain Scale Factor
Specifies the amount by which the velocity p-gain is reduced or increased when the actuator is
near the specified position setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and position-dependent velocity gain scheduling is
enabled. This field has no effect in velocity control mode.

14.38.7.7 Velocity-Dependent Position Gain Scale Factor
Specifies the amount by which the position p-gain is reduced or increased when the actuator is
near the specified velocity setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and velocity-dependent position gain scheduling is
enabled. This field has no effect in velocity control mode.

14.38.7.8 Velocity-Dependent Velocity Gain Scale Factor
Specifies the amount by which the velocity p-gain is reduced or increased when the actuator is
near the specified velocity setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and velocity-dependent velocity gain scheduling is
enabled.

14.38.7.9 Reserved #2
This field is not currently implemented and has no effect on system operation.

14.38.7.10 Position-Dependent Position Gain Scaling Threshold
Specifies the position delta threshold (distance between current position and position setpoint, in
milli-degrees), below which the position-dependent position gain scale factor will be applied to the
position p-gain.

81

14.38.7.11 Position-Dependent Velocity Gain Scaling Threshold
Specifies the position delta threshold (distance between current position and position setpoint, in
milli-degrees), below which the position-dependent velocity gain scale factor will be applied to the
velocity p-gain.

14.38.7.12 Velocity-Dependent Position Gain Scaling Threshold
Specifies the velocity delta threshold (difference between current velocity and velocity setpoint, in
milli-RPM), below which the velocity-dependent position gain scale factor will be applied to the
position p-gain.

14.38.7.13 Velocity-Dependent Velocity Gain Scaling Threshold
Specifies the velocity delta threshold (difference between current velocity and velocity setpoint, in
milli-RPM), below which the velocity-dependent velocity gain scale factor will be applied to the
velocity p-gain.

14.38.7.14 Reserved #3
This field is not currently implemented and has no effect on system operation.

82

14.39 Linear Actuators – Gain Scheduling Configuration Packet 0xAB

14.39.1 Set Packet Type
0xAB

14.39.2 Request Type
0xAC

14.39.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.39.4 Function
The gain scheduling configuration packet is used to configure the actuator’s PID gain scheduler. This
system is used to automatically adjust the actuator’s PID gain values depending on how close the
actuator is to the desired setpoint. This allows the actuator to respond quickly when making a large
setpoint change, while still remaining stable while tracking a constant setpoint.

14.39.5 Payload Length
44

14.39.6 Payload Structure

Linear – Gain Scheduling Configuration (Table 1 of 2)

Payload
Index

0 1 2 3 4:7 8:11 12:15 16:19

Data
Type

char bool uint8

uint8 float float float float

Field Packet
Type:
0xAB

Gain
Scheduling
Enable

Reserved #1 Gain
Scheduling
Mode

Position-
Dependent
Position Gain
Scale Factor

Position-
Dependent
Velocity Gain
Scale Factor

Velocity-
Dependent
Position Gain
Scale Factor

Velocity-
Dependent
Velocity
Gain Scale
Factor

Linear – Gain Scheduling Configuration (Table 2 of 2)

Payload
Index

20:23 24:27 28:31 32:35 36:39 40:43

Data
Type

uint32 int32 int32 int32 int32 uint32

Field Reserved
#2

Position-
Dependent Position
Gain Scaling
Threshold

Position-
Dependent Velocity
Gain Scaling
Threshold

Velocity-
Dependent Position
Gain Scaling
Threshold

Velocity-
Dependent Velocity
Gain Scaling
Threshold

Reserved
#3

14.39.7 Field Descriptions

14.39.7.1 Packet Type
The byte specifying the command: 0xAB.

83

14.39.7.2 Gain Scheduling Enable
If set to 1, the gain scheduling system will be enabled. If set to 0, the gain scheduling system will
be disabled and the following fields will have no effect on system operation.

14.39.7.3 Reserved #1
This field does not currently affect actuator operation. However, it should be set to 0 to ensure
compatibility with future firmware revisions.

14.39.7.4 Gain Scheduling Mode
This field specifies which gain scheduling modes are enabled, depending on which bits are set:
Bit 0: Enable position-dependent position gain scheduling
Bit 1: Enable position-dependent velocity gain scheduling
Bit 2: Enable velocity-dependent position gain scheduling
Bit 3: Enable velocity-dependent velocity gain scheduling
Bit 4-7: Reserved

Note that enabling multiple gain scheduling options which affect the same gain value (e.g.
position-dependent position gain scheduling and velocity-dependent position gain scheduling) may
cause unexpected interactions. Operating the actuator in this manner should be done with
caution.

14.39.7.5 Position-Dependent Position Gain Scale Factor
Specifies the amount by which the position p-gain is reduced or increased when the actuator is
near the specified position setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and position-dependent position gain scheduling is
enabled. This field has no effect in velocity control mode.

14.39.7.6 Position-Dependent Velocity Gain Scale Factor
Specifies the amount by which the velocity p-gain is reduced or increased when the actuator is
near the specified position setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and position-dependent velocity gain scheduling is
enabled. This field has no effect in velocity control mode.

14.39.7.7 Velocity-Dependent Position Gain Scale Factor
Specifies the amount by which the position p-gain is reduced or increased when the actuator is
near the specified velocity setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and velocity-dependent position gain scheduling is
enabled. This field has no effect in velocity control mode.

14.39.7.8 Velocity-Dependent Velocity Gain Scale Factor
Specifies the amount by which the velocity p-gain is reduced or increased when the actuator is
near the specified velocity setpoint. This floating point number is directly multiplied by the p-gain
value when the threshold condition is met and velocity-dependent velocity gain scheduling is
enabled.

14.39.7.9 Reserved #2
This field is not currently implemented and has no effect on system operation.

14.39.7.10 Position-Dependent Position Gain Scaling Threshold
Specifies the position delta threshold (distance between current position and position setpoint, in
milli-inches), below which the position-dependent position gain scale factor will be applied to the
position p-gain.

84

14.39.7.11 Position-Dependent Velocity Gain Scaling Threshold
Specifies the position delta threshold (distance between current position and position setpoint, in
milli-inches), below which the position-dependent velocity gain scale factor will be applied to the
velocity p-gain.

14.39.7.12 Velocity-Dependent Position Gain Scaling Threshold
Specifies the velocity delta threshold (difference between current velocity and velocity setpoint, in
milli-inches/minute), below which the velocity-dependent position gain scale factor will be applied
to the position p-gain.

14.39.7.13 Velocity-Dependent Velocity Gain Scaling Threshold
Specifies the velocity delta threshold (difference between current velocity and velocity setpoint, in
milli-inches/minute), below which the velocity-dependent velocity gain scale factor will be applied
to the velocity p-gain.

14.39.7.14 Reserved #3
This field is not currently implemented and has no effect on system operation.

85

14.40 Rotary Actuators – Position Linearization Configuration Packet 0xAD

14.40.1 Set Packet Type
0xAD

14.40.2 Request Type
0xAE
Note that this request packet must include the desired start entry number as a 16-bit number and
desired element count as an 8-bit number after the request type. Example request packet starting
at entry 0 with 18 items:
0x3C 0x04 0xAE 0x00 0x00 0x12 0xCA 0x3E

14.40.3 Volatility
Position sensor correction data is saved when a “Save to EEPROM” packet is sent. Otherwise, all
values will be restored to their previous values upon the next power cycle

14.40.4 Function
This packet is used to upload a position linearization table to the actuator. This is used to ensure
that the reported position is accurate over the actuator’s entire range of motion. This procedure is
usually done during manufacturing, therefore, this packet is not typically useful to end users.

14.40.5 Payload Length
Varies - Up to 247

14.40.6 Payload Structure

Rotary – Position Linearization

Payload
Index

0 1:2 3 4 5:6 7:8 – 245:246

Data
Type

char uint16 uint8

uint8 uint16 int16

Field Packet Type:
0xAD

Start Entry Entry Count Reserved #1 Calibration
Table Size

Position Sensor Correction Data

14.40.7 Field Descriptions

14.40.7.1 Packet Type
The byte specifying the command: 0xAD.

14.40.7.2 Start Entry
The unit’s internal calibration table contains 360 16-bit entries (one per degree), but the maximum
packet size for actuator communication is 255 bytes. Therefore, access to the calibration table is
performed using segments. This field specifies the first entry number to which the provided data
should be written. If an invalid entry number is provided, the actuator will ignore it.

14.40.7.3 Entry Count
Specifies the number of valid 16-bit table entries which are included in this packet. The packet will
only be long enough to contain the number of entries specified in this field. The maximum
recommended request size is 18 entries.

86

14.40.7.4 Reserved #1
This field is not used and does not currently affect actuator operation.

14.40.7.5 Calibration Table Size
In packets sent from the actuator, this field contains the total size of the actuator’s internal
calibration table. This size is currently fixed at 360 points for rotary actuators, but it may change in
future actuator firmware revisions.
In packets sent to the actuator, this field is ignored.

14.40.7.6 Position Sensor Correction Data
This field contains one or more points of position correction data. Each point is a signed 16-bit
integer which represents a correction, in milli-degrees, to the degree value at that point. For
example, if the actuator reports 1.0 degrees, but an external encoder reports 1.05 degrees, the
correction factor in position 1 of the correction table would be -50, representing 0.050 degrees of
correction. The correction factor in position 0 must be 0; if a nonzero correction is provided for
position 0 of page 0, it will be automatically replaced by a 0 value.
The last correction factor of the last page should be less than 1 degree, otherwise unexpected
behavior may occur.

87

14.41 Rotary Actuators – Raw Position Packet 0xAF

14.41.1 Set Packet Type
0xAF

14.41.2 Request Type
0xB1

14.41.3 Volatility
All settings changed by this packet will be lost upon power on.

14.41.4 Function
This packet is used to obtain a raw value from the position sensor, before any calibration, offsets, or
linearization have been applied. This can be useful for debugging or troubleshooting. It is strongly
recommended that customers use the System Info Packet in order to get the actuator position, as
this will provide more useful information about the actuator’s position for virtually all practical
applications.

14.41.5 Payload Length
13

14.41.6 Payload Structure

Rotary – Raw Position

Payload
Index

0 1:4 5 4 5:8 9:12

Data
Type

char uint32 uint8

uint8 uint32 int32

Field Packet Type:
0xAF

Averaging Count Mode Reserved #1 Reserved #2 Raw Position Data

14.41.7 Field Descriptions

14.41.7.1 Packet Type
The byte specifying the command: 0xAF.

14.41.7.2 Averaging Count
Number of position samples to average.

14.41.7.3 Mode
The type of position to report:
0: Binary – reports raw binary data from position sensor
1: Degree – reports position sensor data in milli-degrees

14.41.7.4 Reserved #1
This field is not used and does not currently affect actuator operation.

14.41.7.5 Reserved #2
This field is not used and does not currently affect actuator operation.

88

14.41.7.6 Raw Position Data
Contains the raw position data, averaged the specified number of times. As this data is
unprocessed, positions near 0 degrees will not be handled well and may produce unexpected
readings.
When sending a set packet to the actuator, this field will be ignored and can be safely omitted.

89

14.42 Auto-Info Configuration Packet 0xB2

14.42.1 Set Packet Type
0xB2

14.42.2 Request Type
0xB3

14.42.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.42.4 Function
This function is used to enable auto-info responses from the actuator. The actuator will typically
respond to most command packets with an Acknowledge Packet. In some systems, to maximize
throughput, it may be desirable to receive System Info or other packets without sending a separate
request packet. This command allows the user to select one or more packet types which will trigger
a System Info or other packet(s) as a response instead of the default acknowledge packet.

14.42.5 Payload Length
42

14.42.6 Payload Structure

Auto-Info Configuration

Payload
Index

0 1 2:5 6:9 10:41

Data
Type

char bool uint32

uint32 uint8

Field Packet
Type:
0xB2

Auto-Info Enable Reply Mode Reserved #1 Auto-Info enable bits

14.42.7 Field Descriptions

14.42.7.1 Packet Type
The byte specifying the command: 0xB2

14.42.7.2 Auto-Info Enable
If set to 1, auto-info will be enabled. If set to 0, auto-info will be disabled and the following fields
will have no effect on system operation. If auto-info is disabled, all packets will return their default
response (typically, an acknowledge packet).

14.42.7.3 Reply Mode
This field specifies which packet(s) will be sent as a reply to the packets selected by the Auto-Info
enable bits field. It is possible to select more than one response type in this field and the actuator
will send multiple response packets per packet received. However, caution should be exercised
when selecting multiple response packets as this may break packet handlers which assume only
one packet will be returned per packet sent. This issue may be exacerbated on half-duplex

90

communication links such as RS-485. The following response packet types may be selected by
setting the appropriate bit in this field:
0 – Acknowledge ‘A’ (default)
1 – System Info ‘P’
2 – System Info 2 0xA2
3 – Velocity ‘H’
4 – Faults ‘F’
5 – Fault History ‘N’
6 – Motion Profile Status 0x9C
7 – Failsafe Time Remaining 0x94

14.42.7.4 Reserved #1
This field does not currently affect actuator operation. However, it should be set to 0 to ensure
compatibility with future firmware revisions.

14.42.7.5 Auto-Info enable bits
This field indicates which packets will trigger an auto-info response vs the standard acknowledge
packet response.
This field functions as a bit field with one bit for each of the 255 valid packet types. It is arranged
as a 32-byte array with index 0 of the array corresponding to byte 8 of the packet and index 32
corresponding to byte 39 of the packet. Bit 0 of index 0 corresponds to packet type 0x00, Bit 7 of
index 0 corresponds to packet type 0x07, bit 0 of index 1 corresponds to packet type 0x09, and so
on. For example, to set Auto-Info enabled for the Setpoint velocity ‘S’ (0x53 hex, 83 decimal)
command, you would set the 83rd bit of this field (byte 10, bit 3) to 1. The general form is: byte# =
command / 8, bit # = command mod 8.
Commands corresponding to bits which are set to 0 will produce the standard Acknowledge packet
response. Commands which return values other than acknowledge (such as system info requests,
setpoint requests, velocity requests, etc. will ignore the auto-info function and continue to return
only their default response packet.

91

14.43 Rotary Actuators – Persistent Revolution Counting Configuration Packet 0xB4

14.43.1 Set Packet Type
0xB4

14.43.2 Request Type
0xB5

14.43.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle

14.43.4 Function
This packet is used to configure persistent revolution counting. It can be used to enable/disable the
persistent revolution counting functionality, as well as to determine if the functionality is available
on a particular unit. This packet is available in firmware versions 5.3 and later.

14.43.5 Payload Length
15

14.43.6 Payload Structure
Persistent Revolution Counting Configuration

Payload
Index

0 1:2 3:6 7:10 11:14

Data
Type

char uint16 uint32

uint32 uint32

Field Packet
Type:
0xB4

Persistent Rev
Counting Flags

Reserved #1 Reserved #2 Reserved #3

14.43.7 Field Descriptions

14.43.7.1 Packet Type
The byte specifying the command: 0xB4

14.43.7.2 Persistent Rev Counting Flags
This field contains information about, and allows configuration of, the persistent revolution
counting subsystem. The following bits are defined in this field:
Bit 0 (Read only): Persistent rev counting available – if 1, indicates that this unit has the hardware
necessary to support the persistent revolution counting feature. If 0, this unit is not capable of
supporting persistent revolution counting, and writes to bit 1 will be ignored.
Bit 1: Persistent rev counting enabled – Enables the persistent revolution counting feature when
set to 1. The revolution counter will be saved and restored when the unit is power cycled. This
feature is enabled by default on units which support the feature. After enabling this feature, it is
recommended that to reset rotary counters to ensure the reported position is correct.

14.43.7.3 Reserved #1-#3
These fields do not currently affect actuator operation. However, they should be set to 0 to
ensure compatibility with future firmware revisions.

92

14.44 CAN Bus Configuration Packet 0xB8 (Actuators equipped with CAN only)

14.44.1 Set Packet Type
0xB8

14.44.2 Request Type
0xB9

14.44.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle. Changes made will not take
effect until the next power cycle.

14.44.4 Function
This packet is used to configure CAN bus communication options. This packet is available in
firmware versions 6.9 and later.

14.44.5 Payload Length
32

14.44.6 Payload Structure
CAN Bus Configuration (Table 1 of 2)

Payload
Index

0 1:4 5:8 9 10:13 14:17

Data
Type

char uint32 uint32 uint8 uint32 uint32

Field Packet Type: 0xB8 CAN baud rate Reserved #1 Use extended IDs Transmit base ID Receive base ID

CAN Bus Configuration (Table 2 of 2)

Payload
Index

18:21 22:25 26:29 30:31

Data
Type

uint32 uint32 uint32 uint16

Field CAN TX message bitmask 1 Reserved #2 CAN message broadcast interval Reserved #3

14.44.7 Field Descriptions

14.44.7.1 Packet Type
The byte specifying the command: 0xB8

14.44.7.2 CAN Baud Rate
Sets the CAN communication baud rate in bits per second. Most common CAN baud rates up to
1Mbps are supported, with the exception of 800Kbps. If this field is set to 0, the CAN interface will
be disabled and the actuator will not send or receive any CAN messages.

14.44.7.3 Reserved #1
This field does not currently affect actuator operation.

93

14.44.7.4 Use Extended IDs
If set to 1, the actuator will communicate using extended (29-bit) CAN message identifiers. If set
to 0, the actuator will use standard (11-bit) CAN message identifiers.

14.44.7.5 Transmit Base ID
The actuator is capable of sending out a number of CAN messages to indicate various pieces of
information about its current state. This field sets the CAN identifier of the first message type.
Additional message types will be sent with an offset added to this ID. See the 2G Actuator CAN
Messages document for more information on available CAN messages.

14.44.7.6 Receive Base ID
The actuator is capable of receiving a number of CAN messages to control various actuator
functions. This fields sets the CAN identifier of the first message type to be received. Additional
message types can be sent with an offset added to this ID. See the 2G Actuator CAN Messages
document for more information on available CAN messages.

14.44.7.7 CAN TX Message Bitmask 1
This field is used to set which status messages the actuator will send out. A message is enabled by
setting a 1 in the corresponding bit position. For example, message offset 0 is enabled by setting
bit 0 in this field. If this field is set to 0, the actuator will not send out any CAN status messages,
but will still accept incoming CAN command messages. See the 2G Actuator CAN Messages
document for more information on available CAN messages.

14.44.7.8 Reserved #2
This field does not currently affect actuator operation.

14.44.7.9 CAN Message Broadcast Interval
Sets the interval (in ms) between CAN status messages sent out by the actuator. The system
enforces a minimum value of 10ms between CAN messages.

14.44.7.10 Reserved #3
This field does not currently affect actuator operation.

94

14.45 Actuator Name Packet 0xBC

14.45.1 Set Packet Type
0xBC

14.45.2 Request Type
0xBD

14.45.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle.

14.45.4 Function
This packet is used to assign a name string to an actuator. This packet is for convenience only and
does not affect actuator operation in any way. This packet is available in firmware versions 6.9 and
later.

14.45.5 Payload Length
Up to 49

14.45.6 Payload Structure

Actuator Name Configuration

Payload
Index

0 1-48

Data
Type

char char

Field Packet Type: 0xBC Actuator Name

14.45.7 Field Descriptions

14.45.7.1 Packet Type
The byte specifying the command: 0xBC

14.45.7.2 Actuator Name
A string of bytes which can be set to an arbitrary value in order to make identification of actuators
simpler. For example, in a system with multiple actuators, actuators could be assigned names such
as “Valve Control 1”, “Valve Control 2”, and so on. The actuators’ names can then be queried over
serial to ensure that the desired actuator is being controlled at any given point.
It is not necessary to send the entire 48 bytes of the string if the packet’s length field is reduced
accordingly.
The actuator will always replace the last byte of the string with a null (0) termination character.

95

14.46 Integral Valve Configuration Packet 0xC2 (Actuators equipped with integral valves
only)

14.46.1 Set Packet Type
0xC2

14.46.2 Request Type
0xC3

14.46.3 Volatility
All values are volatile and will change according to conditions.

14.46.4 Function
This packet is used to control the actuator’s integral control valve (if equipped). This packet is
available in firmware versions 6.15 and later.

14.46.5 Payload Length
7

14.46.6 Payload Structure

Integral Valve Configuration

Payload
Index

0 1 2 3:6

Data
Type

char uint8 uint8

uint32

Field Packet Type: 0xC2 Reserved #1 Integral Valve State Reserved #2

14.46.7 Field Descriptions

14.46.7.1 Packet Type
The byte specifying the command: 0xC2

14.46.7.2 Reserved #1
This field does not currently affect actuator operation. However, it should be set to 0 to ensure
compatibility with future firmware revisions.

14.46.7.3 Integral Valve State
This field controls the state of the actuator’s integral control valve. A 0 in this field commands the
valve into state A, and a 1 in this field commands the valve into state B. All other values are
reserved and should not be used.

14.46.7.4 Reserved #2
This field does not currently affect actuator operation. However, it should be set to 0 to ensure
compatibility with future firmware revisions.

96

14.47 Ethernet Configuration Packet 0xBE (Actuators equipped with Ethernet only)

14.47.1 Set Packet Type
0xBE

14.47.2 Request Type
0xBF

14.47.3 Volatility
All values in this packet are saved when a “Save to EEPROM” packet is sent. Otherwise, all values
will be restored to their previous values upon the next power cycle. Changes made will not take
effect until the next power cycle.

14.47.4 Function
This packet is used to configure the Ethernet interface on actuators equipped with Ethernet.

14.47.5 Payload Length
30

14.47.6 Payload Structure
Ethernet Configuration (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16

Data
Type

char uint32 uint32 uint32 uint32

Field Packet Type: 0xBE IPv4 Address IPv4 Subnet Mask IPv4 Default Gateway IPv4 DNS Server

Ethernet Configuration (Table 2 of 2)

Payload
Index

17:20 21:24 26:29

Data
Type

uint32 uint32 uint32

Field Ethernet Options Reserved #1 Reserved #2

14.47.7 Field Descriptions

14.47.7.1 Packet Type
The byte specifying the command: 0xBE

14.47.7.2 IPv4 Address
Specifies the IP address for the actuator to use in static IP mode. IP addresses are represented in
little endian, so, for example, the address 192.168.1.2 would correspond to the hex value
0xC0A80102.

14.47.7.3 IPv4 Subnet Mask
Specifies the subnet mask to use in static IP mode. Subnet masks are represented in little endian,
so, for example, the mask 255.255.0.0 would correspond to the hex value 0xFFFF0000.

97

14.47.7.4 IPv4 Default Gateway
Specifies the default gateway to use in static IP mode. IP addresses are represented in little endian,
so, for example, the address 192.168.1.1 would correspond to the hex value 0xC0A80101.

14.47.7.5 IPv4 DNS Server
Specifies the address of the preferred DNS server. Note that the actuator firmware does not
currently use any DNS functionality or perform any DNS lookups. This field is provided for
compatibility with future firmware only. IP addresses are represented in little endian, so, for
example, the address 192.168.1.1 would correspond to the hex value 0xC0A80101.

14.47.7.6 Ethernet Options
This field allows various Ethernet options to be configured by setting or clearing the following bits:
0 – Enable DHCP. When set, DHCP will be enabled and the provided IP address will be ignored.
When cleared, DHCP will be disabled and the actuator will operate in static IP mode.
1 – Automatic discovery broadcast. When set, the actuator will automatically broadcast an SSDP
NOTIFY packet at 15 minute intervals which contains its current IP address. The actuator will
respond to SSDP DISCOVER messages regardless of whether or not this bit is set.

14.47.7.7 Reserved #1
This field is not currently used and has no effect on actuator functionality.

14.47.7.8 Reserved #2
This field is not currently used and has no effect on actuator functionality.

98

15 Information Packets
Information packets are receive-only, the fields cannot be set. They are sent out from the actuator in response
to a request packet. Request packets are simple packets with one byte in the payload which specifies the
command or type.

All information request packets must adhere to the following format:

15.1 Acknowledgement Packet ‘A’

15.1.1 Set Packet type
‘A’ (0x41)

15.1.2 Request type
‘a’ (0x61)
The request packet, like other information request packets, contains only the packet type field in the
payload; the Model Identifier cannot be set.

15.1.3 Volatility
The Model identifier field contains static information set in the firmware that will not change.

15.1.4 Function
This acknowledgement packet is sent in response to any valid packet that does not otherwise
receive a response. It is also triggered by an acknowledgement request packet (‘a’).
Ill-formed packets that do not pass a CRC check will not trigger this packet.
This packet also contains 1 byte of basic identifying information about the actuator.

15.1.5 Payload Length
2

15.1.6 Payload Structure

Request Packet Template

Payload Index 0

Data Type Char

Field Packet Type

Acknowledgement Packet

Payload
Index

0 1

Data
Type

Char uint8

(Static)

Field Packet
Type: ‘A’

Model Identifier

99

15.1.7 Field Descriptions

15.1.7.1 Packet Type
The byte indicating the packet type: ‘A’ (0x41)

15.1.7.2 Model Identifier
Contains information about the actuator model.

Bit 0:
0 = Linear
1 = Rotary

Bits 1-2:
 00 = Standard

01 = Valve Actuator
Bits 3-6:

0000 = Series 2000
0001 = Series 3500
0010 = Series 4000
0011 = HPU
0100 = Series 6000
0101 = Series 3000
0110 = “Sidecar” actuator

 Bit 7:
 0 = Generation 1 PID control algorithm
 1 = Generation 2 PID control algorithm

100

15.2 Failsafe Time Remaining Information Packet 0x94

15.2.1 Receive Packet Type
0x94

15.2.2 Request Type
0x95

15.2.3 Volatility
All values are volatile and will change according to conditions.

15.2.4 Function
Triggered in response to a 0x95 request packet, contains time remaining until the failsafe timer
expires. This value is reset when a system info request packet is received by the actuator.

15.2.5 Payload Length
5

15.2.6 Payload Structure

15.2.7 Field Descriptions

15.2.7.1 Packet Type
The byte indicating the packet type: 0x94

15.2.7.2 Failsafe Time Remaining
If failsafe mode is enabled, this represents the time remaining, in ms, until the failsafe timeout
occurs (+/- 100ms).
If failsafe mode is not enabled, or the timeout has already occurred, this will field will be value 0.

Failsafe Time Remaining Information

Payload
Index

0 1:4

Data
Type

char uint32

Field Packet
Type:
0x94

Failsafe Time Remaining

101

15.3 Fault History Information Packet ‘N’

15.3.1 Receive Packet Type
‘N’ (0x4E)

15.3.2 Request Type
‘n’ (0x6E)

15.3.3 Volatility
All values effected by this command are volatile. However, historic faults occupy a section of RAM
that is not initialized when the board powers up. Although these values will be lost if the board loses
power, in the event of a reset (such as by a watchdog timeout), these values will remain.

15.3.4 Function
Triggered in response to an ‘n’ (0x6E) request packet, the fault history information packet contains
information about historic faults.
Unlike standard faults, historic faults can help to identify any faults that occurred and resolved, or
that were present before the system was reset.

15.3.5 Payload Length
5

15.3.6 Payload Structure

15.3.7 Field Descriptions

15.3.7.1 Packet Type
The byte indicating the packet type: ‘N’ (0x4E)

15.3.7.2 Motor Controller Historic Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Short to supply, short to ground, or shorted motor winding fault.

 Bit 1 – Under voltage, over-temp, or logic fault.

 Bit 2 – Motor stalled (only if stall detection and stall fault are enabled).

15.3.7.3 Position Sensor Historic Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Sensor communications fault.

 Bit 1 – Sensor reading fault.

 Bit 2 – Position stability fault.

Fault History Information

Payload
Index

0 1 2 3 4

Data
Type

char uint8

(Non-Initialized)

uint8

(Non-Initialized)

uint8

(Non-Initialized)

uint8

(Non-Initialized)

Field Packet
Type: ‘N’

Motor Controller Faults Position Sensor Faults Temperature Faults Communication Faults

102

15.3.7.4 Temperature Historic Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 - Temp Sensor 1 Open Fault.

 Bit 1 - Temp Sensor 1 Short Fault.

 Bit 2 - Temp Sensor 2-4 Open Fault.

 Bit 3 -Temp Sensor 2-4 Short Fault.

 Bit 4 -Temp Sensor 1 High Temp Fault.

 Bit 5 - Temp Sensor 1 Low Temp Fault.

 Bit 6 - Temp Sensor 2-4 High Temp Fault.

 Bit 7 - Temp Sensor 2-4 Low Temp Fault.

15.3.7.5 Communication Historic Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Persistent CRC-failure fault.

 Bit 1 – Persistent packet-misalignment fault.

 Bit 2 – EEPROM write failure. This bit is set after a “Save to EEPROM” command if the
write failed.

 Bit 3 – EEPROM read failure. This bit is set at power-on if the actuator was unable to
restore the saved configuration file from EEPROM. If this bit is set, the actuator’s
configuration has been reset to defaults and all user-configurable settings will need to be
reapplied.

 Bit 4 – Persistent rev counting fault. Revolution count may have been reset.

 Bit 5 – Internal file system fault.

 Bit 6 – Parameter fault. Invalid data may have been provided to the unit over Modbus.

103

15.4 Fault Information Packet ‘F’

15.4.1 Receive Packet Type
‘F’ (0x46)

15.4.2 Request Type
‘f’ (0x66)

15.4.3 Volatility
All values are volatile and will change according to conditions.

15.4.4 Function
Triggered in response to an ‘f’ (0x66) request packet, the fault information packet contains
information about system fault states.

15.4.5 Payload Length
5

15.4.6 Payload Structure

15.4.7 Field Descriptions

15.4.7.1 Packet Type
The byte indicating the packet type: ‘F’ (0x46)

15.4.7.2 Motor Controller Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Short to supply, short to ground, or shorted motor winding fault.

 Bit 1 – Under voltage, over-temp, or logic fault.

 Bit 2 – Motor stalled (only if stall detection and stall fault are enabled).

15.4.7.3 Position Sensor Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Sensor communications fault.

 Bit 1 – Sensor reading fault.

 Bit 2 – Position stability fault.

15.4.7.4 Temperature Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 - Temp Sensor 1 Open Fault.

 Bit 1 - Temp Sensor 1 Short Fault.

 Bit 2 - Temp Sensor 2-4 Open Fault.

 Bit 3 -Temp Sensor 2-4 Short Fault.

Fault Information

Payload
Index

0 1 2 3 4

Data
Type

char uint8 uint8 uint8 uint8

Field Packet
Type: ‘F’

Motor Controller Faults Position Sensor Faults Temperature Faults Communication Faults

104

 Bit 4 -Temp Sensor 1 High Temp Fault.

 Bit 5 - Temp Sensor 1 Low Temp Fault.

 Bit 6 - Temp Sensor 2-4 High Temp Fault.

 Bit 7 - Temp Sensor 2-4 Low Temp Fault.

15.4.7.5 Communication Faults
If the specified bit is 1, it indicates a fault.

 Bit 0 – Persistent CRC-failure fault.

 Bit 1 – Persistent packet-misalignment fault.

 Bit 2 – EEPROM write failure. This bit is set after a “Save to EEPROM” command if the
write failed, and cleared after a successful write to EEPROM.

 Bit 3 – EEPROM read failure. This bit is set at power-on if the actuator was unable to
restore the saved configuration file from EEPROM. If this bit is set, the actuator’s
configuration has been reset to defaults and all user-configurable settings will need to be
reapplied.

 Bit 4 – Persistent rev counting fault. Revolution count may have been reset.

 Bit 5 – Internal file system fault.

 Bit 6 – Parameter fault. Invalid data may have been provided to the unit over Modbus.

105

15.5 Firmware Build Information Packet 0x96

15.5.1 Receive Packet Type
0x96

15.5.2 Request Type
0x97

15.5.3 Volatility
All values are stored in ROM and will only change when the actuator’s firmware is updated.

15.5.4 Function
Triggered in response to a 0x97 request packet, the firmware build information packet contains
information about the version of firmware currently running on the unit.
Note: Firmware versions prior to 3.9 (released 2016-01-05) do not contain the hardware serial
number or reserved #2 fields, for a total packet length of 17.

15.5.5 Payload Length
37

15.5.6 Payload Structure

15.5.7 Field Descriptions

15.5.7.1 Packet Type
The byte indicating the packet type: 0x96

15.5.7.2 Firmware Build Number
This number represents the build number of the currently active firmware. The build number
uniquely identifies a particular firmware image. The build number increases monotonically such
that when comparing build numbers, the highest number always represents the most recent
firmware version. The build number will change between firmware revisions even if the firmware
version number (see ‘?’) does not.

15.5.7.3 Firmware Build Time
Indicates the date and time when the firmware image was compiled, represented as the number
of seconds since January 1, 1970 00:00 UTC.

15.5.7.4 Hardware Serial Number [0-3]
These 4 32-bit numbers, when concatenated, form a 128-bit serial number which uniquely
identifies the main CCA inside the actuator.

Firmware Build Information

Payload
Index

0 1:4 5:12 13:16 17:20 21:24 25:28 29:32 33:36

Data
Type

char uint32 uint64 uint32 uint32 uint32 uint32 uint32 uint32

Field Packet
Type:
0x96

Firmware
Build
Number

Build
Time

Hardware
Serial
Number [0]

Hardware
Serial
Number [1]

Hardware
Serial
Number [2]

Hardware
Serial
Number [3]

Reserved
#1

Reserved
#2

106

15.5.7.5 Reserved #1
This field is currently unused and will not contain meaningful data.

15.5.7.6 Reserved #2
This field is currently unused and will not contain meaningful data.

107

15.6 Firmware Version Number Packet ‘?’

15.6.1 Receive Packet Type
‘?’ (0x3F)

15.6.2 Request Type
‘?’ (0x3F)

15.6.3 Volatility
All values are stored in ROM and will only change when the actuator’s firmware is updated.

15.6.4 Function
Triggered in response to a ‘?’ (0x3F) request packet, the firmware build information packet contains
information about the version of firmware currently running on the unit. The firmware version is
typically only incremented when major new features or bug fixes are implemented. To verify if two
units are running identical firmware revisions, see the Firmware Build Information Packet.
Note: Firmware versions prior to 3.0 (released 2015-09-02) represent the firmware version as a
single 32-bit float rather than two 16-bit integers.

15.6.5 Payload Length
5

15.6.6 Payload Structure

15.6.7 Field Descriptions

15.6.7.1 Packet Type
The byte indicating the packet type: ‘?’ (0x3F)

15.6.7.2 Firmware Major Version
Represents the major version number of the current actuator firmware. For example, if the
actuator was running firmware version 3.5, this field would contain the number 3.

15.6.7.3 Firmware Minor Version
Represents the major version number of the current actuator firmware. For example, if the
actuator was running firmware version 3.5, this field would contain the number 5.

Firmware Build Information

Payload
Index

0 1:2 3:4

Data
Type

char uint16 uint16

Field Packet Type: ‘?’ Firmware Major Version Firmware Minor Version

108

15.7 Scaled Position Information Packet 0x90

15.7.1 Receive Packet Type
0x90

15.7.2 Request Type
0x91

15.7.3 Volatility
All values are volatile and will change according to conditions.

15.7.4 Function
Triggered in response to a 0x91 request packet, returns the actuator’s scaled position.

15.7.5 Payload Length
5

15.7.6 Payload Structure

15.7.7 Field Descriptions

15.7.7.1 Packet Type
The byte indicating the packet type: 0x90

15.7.7.2 Scaled Position
Returns the actuator position as a signed integer in terms of the internal scaling function.
Range: -10,000 to 10,000

Scaled Position Information

Payload
Index

0 1:4

Data
Type

char int32

Field Packet Type:
0x90

Scaled Position

109

15.8 Linear Actuators - System Status Information Packet ‘P’

15.8.1 Receive Packet Type
‘P’ (0x50)

15.8.2 Request Type
‘p’ (0x70)

15.8.3 Volatility
All values are volatile and will change according to conditions.

15.8.4 Function
Triggered in response to a ‘p’ (0x70) request packet, this is the primary system information
containing basic information about the system’s status.

15.8.5 Payload Length
16

15.8.6 Payload Structure

15.8.7 Field Descriptions

15.8.7.1 Packet Type
The byte indicating the packet type: ‘P’ (0x50)

15.8.7.2 Motor Status
Indicates information about the motor’s status.

Below are the designations sent out from the actuator:
 Bits 0-2:
 0000 – Motor is Off.
 0001 – Motor is On.
 0010 – Motor is On and Braking.
 0011 – Motor is On and Coasting.
 Bit 5 – Reserved
 Bit 6:
 0 – Hardware Brake is Disengaged.
 1 – Hardware Brake is Engaged.
 Bit 7:
 0 – Unit does not have hardware brake.
 1 – Unit has hardware brake.

15.8.7.3 Motor Direction
Indicates the motor’s direction of travel.

Linear - System Status Information

Payload
Index

0 1 2 3:6 7 8 9:12 13:14 15

Data
Type

char uint8 uint8 int32 int8 int8 int32 int16 uint8

Field Packet
Type: ‘P’

Motor
Status

Motor
Direction

Absolute
Position

Temperature
1

Temperature
2

Voltage Current Reserved

110

0 – Reverse.
1 – Forward.

15.8.7.4 Absolute Position
Indicates the shaft position in mil.
The relative position is not given explicitly by the actuator, it can be determined by the absolute
position.

15.8.7.5 Temperature 1
Indicates the temperature reading on sensor 1, in degrees Celsius.

15.8.7.6 Temperature 2
Indicates the temperature reading on sensor 2, in degrees Celsius.

15.8.7.7 Voltage
Indicates the voltage reading, in millivolts.

15.8.7.8 Current
Indicates the board current reading, in milliamps. This value is signed; negative values indicate that
the actuator is generating current. This may occur with certain actuator configurations when
driven by an applied mechanical load.

15.8.7.9 Reserved
This byte is reserved.

111

15.9 Rotary Actuators - System Status Information Packet ‘P’

15.9.1 Receive Packet Type
‘P’ (0x50)

15.9.2 Request Type
‘p’ (0x70).

15.9.3 Volatility
All values are volatile and will change according to conditions.

15.9.4 Function
Triggered in response to a ‘p’ (0x70) request packet, this is the primary system information
containing basic information about the system’s status. Note that the actuator will report the speed
even if the shaft is being driven by external forces. However, the motor must be on, braking, or
coasting for a speed to be reported.

15.9.5 Payload Length
24

15.9.6 Payload Structure

15.9.7 Field Descriptions

15.9.7.1 Packet Type
The byte indicating the packet type: ‘P’ (0x50)

Rotary – System Status Information (Table 1 of 2)

Payload
Index

0 1 2 3:6 7:10 11:14

Data
Type

char uint8 uint8 int32 int32 int32

Field Packet
Type: ‘P’

Motor Status Motor Direction Absolute Position Motor
Revolutions

Total Degrees

Rotary – System Status Information (Table 2 of 2)

Payload
Index

15 16 17:20 21:22 23

Data Type int8 int8 int32 int16 uint8

Field Temperature 1 Temperature 2 Voltage Current Reserved

112

15.9.7.2 Motor Status
Indicates information about the motor’s status.

Below are the designations sent out from the actuator:
 Bits 0-2:
 0000 – Motor is Off.
 0001 – Motor is On.
 0010 – Motor is On and Braking.
 0011 – Motor is On and Coasting.
 Bit 5 – Reserved
 Bit 6:
 0 – Hardware Brake is Disengaged.
 1 – Hardware Brake is Engaged.
 Bit 7:
 0 – Unit does not have hardware brake.
 1 – Unit has hardware brake.

15.9.7.3 Motor Direction
Indicates the motor’s direction of travel.

 0 – Reverse

 1 – Forward

15.9.7.4 Absolute Position
Indicates the shaft position in millidegrees.
The relative position is not given explicitly by the actuator, it can be determined by the absolute
position.

15.9.7.5 Motor Revolutions
Indicates the total revolutions since power-on.
A negative number indicates reverse rotations.
The revolution counter may be reset with a ‘<’ packet.

15.9.7.6 Total Degrees
Indicates the position, in millidegrees, relative to the total number of revolutions since power on
or since the revolution counter was reset by a ‘<’ packet. Note: as this is a signed 32-bit integer, it
will wrap around every 231-1 millidegrees (approximately 5965 revolutions). The Motor
Revolutions field will continue to report motor revolutions correctly up to 231-1 revolutions. Be
sure to account for this in your software design if you expect to accumulate a large number of
motor revolutions in your application.

15.9.7.7 Temperature 1
Indicates the temperature reading on sensor 1, in degrees Celsius.

15.9.7.8 Temperature 2
Indicates the temperature reading on sensor 2, in degrees Celsius.

15.9.7.9 Voltage
Indicates the voltage reading, in millivolts.

15.9.7.10 Current
Indicates the board current reading, in milliamps. This value is signed; negative values indicate that
the actuator is generating current. This may occur with certain actuator configurations when
driven by an applied mechanical load.

113

15.9.7.11 Reserved
This byte is reserved.

114

15.10 System Status Information 2 Packet 0xA2

15.10.1 Receive Packet Type
0xA2

15.10.2 Request Type
0xA3

15.10.3 Volatility
All values are volatile and will change according to conditions.

15.10.4 Function
Triggered in response to a 0xA3 request packet, this packet contains additional information about
current actuator status. Many fields in this packet are only available in units equipped to measure
the specified quantities. The fields that are valid for each unit are indicated by the “Features” field
located at the end of this packet.

15.10.5 Payload Length
26

15.10.6 Payload Structure

15.10.7 Field Descriptions

15.10.7.1 Packet Type
The byte indicating the packet type: 0xA2

15.10.7.2 Brake Current
If the unit is equipped with a mechanical brake, this field indicates the current consumption, in
milliamps, of the mechanical brake hardware.

System Status Information 2 (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16 17:20

Data
Type

char uint32 int32 int32 int32 uint32

Field Packet
Type:
0xA2

Brake Current Board Current Motor Current Reserved #1 External Analog
Input

System Status Information 2 (Table 2 of 2)

Payload
Index

21:24 25:28 29 30:33 34:37 38:41

Data Type int32 uint32 int8 int32 int32 uint32

Field Motor Match Load Bank Match Temperature 3 Reserved #2 Reserved #3 Features

115

15.10.7.3 Board Current
Indicates the board current reading, in milliamps. This value is signed; negative values indicate that
the actuator is generating current. This may occur with certain actuator configurations when
driven by an applied mechanical load. As this field is 32 bits wide, it allows for current readings
larger than +/- 32.7 amps to be indicated.

15.10.7.4 Motor Current
Indicates the current in the motor windings, in milliamps. Note that this value may be significantly
higher than the board current reading, as motor current is recirculated in the motor under various
operating conditions.

15.10.7.5 Reserved #1
This field is not currently used and will not contain meaningful information.

15.10.7.6 External Analog Input
If the actuator is configured with analog control, this field will indicated the value, in millivolts, at
the analog control input pin.

15.10.7.7 Motor Match
This field indicates the pulse-width modulation match value currently being used to drive the
motor.

15.10.7.8 Load Bank Match
This field indicates the pulse-width modulation match value currently being used to drive the
actuator’s internal load bank.

15.10.7.9 Temperature 3
Indicates the temperature reading on sensor 3, in degrees Celsius.

15.10.7.10 Reserved #2, Reserved #3
These fields are not currently used and will not contain meaningful information.

15.10.7.11 Features
Indicates which fields in the System Status Information 2 packet will contain valid data based on
the hardware configuration of the current actuator. Refer to the following table; if a bit is set to 1,
the feature is available, otherwise it is not implemented and the corresponding field should not be
considered to contain valid data.

Bit Feature

0-7 Not Used

8 Brake Current

9 Board Current

10 Motor Current

11 Reserved #1

12 External Analog Input

13 Motor Match

14 Load Bank Match

15 Temperature 3

16 Reserved #2

116

17 Reserved #3

18-31 Not Used

117

15.11 Linear Actuators – Velocity Information Packet ‘H’

15.11.1 Receive Packet Type
‘H’ (0x48)

15.11.2 Request Type
‘h’ (0x68)

15.11.3 Volatility
All values are volatile and will change according to conditions.

15.11.4 Function
Triggered in response to an ‘h’ (0x68) request packet, this packet contains information about motor
and shaft speed. Note that the actuator will report the speed even if the shaft is being driven by
external forces. However, the motor must be on, braking, or coasting for a speed to be reported.

15.11.5 Payload Length
9

15.11.6 Payload Structure

15.11.7 Field Descriptions

15.11.7.1 Packet Type
The byte indicating the packet type: ‘H’ (0x48)

15.11.7.2 Motor Velocity
Indicates the motor’s internal rotational velocity in milli-revolutions (1/1000th of a revolution) per
minute.
A negative value indicates that the motor is spinning in reverse.

15.11.7.3 Linear Velocity
Specifies the shaft’s rate of travel in mil per minute.
A positive value indicates that the shaft is extending.
A negative value indicates that the shaft is retracting.

Linear – Velocity Information

Payload
Index

0 1:4 5:8

Data
Type

char int32 int32

Field Packet Type: ‘H’ Motor Velocity Linear Velocity

118

15.12 Rotary Actuators – Velocity Information Packet ‘H’

15.12.1 Receive Packet Type
‘H’ (0x48)

15.12.2 Request Type
‘h’ (0x68)

15.12.3 Volatility
All values are volatile and will change according to new conditions.

15.12.4 Function
Triggered in response to an ‘h’ (0x68) request packet, this packet contains information about motor
and shaft speed. Note that the actuator will report the speed even if the shaft is being driven by
external forces. However, the motor must be on, braking, or coasting for a speed to be reported.

15.12.5 Payload Length
9

15.12.6 Payload Structure

15.12.7 Field Descriptions

15.12.7.1 Packet Type
The byte indicating the packet type: ‘H’ (0x48)

15.12.7.2 Motor Velocity
Indicates the motor’s internal rotational velocity in millidegrees per minute.
A negative value indicates that the motor is spinning in reverse.

15.12.7.3 Shaft Velocity
Specifies the shaft’s rotational rate of travel in millidegrees per minute.
The relationship between the shaft velocity and motor velocity is dependent on the gearing ratio
between the motor and the shaft.

Rotary – Velocity Information

Payload
Index

0 1:4 5:8

Data
Type

char int32 int32

Field Packet Type:
‘H’

Motor Velocity Shaft Velocity

119

15.13 Motion Profile Status Packet 0x9C

15.13.1 Receive Packet Type
0x9C

15.13.2 Request Type
0x9D

15.13.3 Volatility
All values are volatile and will change according to new conditions.

15.13.4 Function
Triggered in response to a 0x9D request packet, this packet contains information about the currently
active motion profile.

15.13.5 Payload Length
18

15.13.6 Payload Structure

15.13.7 Field Descriptions

15.13.7.1 Packet Type
The byte indicating the packet type: 0x9C

15.13.7.2 Active Profile Mode
Indicates the mode of the currently active motion profile, if any, according to the following
enumerated values:
0 – No profile is currently active.
1 – Position to position profile (Setpoint absolute)
2 – Velocity to velocity profile (Setpoint velocity)

All other values are currently undefined.

15.13.7.3 Profile Time Remaining
Indicates the time remaining in the motion profile, in ms. For a position profile, this value may be
zero for several seconds before the actuator reaches its target position, as the motion profile
subsystem automatically switches the control mode to direct PID control near the end of any
position profile. The “Active Profile Mode” field will indicate whether or not a profile is active
regardless of the time remaining.

15.13.7.4 Reserved #1, Reserved #2, Reserved #3
These fields are currently unused and will not contain meaningful data.

Motion Profile Status

Payload
Index

0 1 2:5 6:9 10:13 14:17

Data Type char uint8 uint32 uint32 uint32 uint32

Field Packet Type:
0x9C

Active
Profile Mode

Profile Time
Remaining

Reserved
#1

Reserved
#2

Reserved
#3

120

15.14 CAN Bus Status Packet 0xBA (Actuators equipped with CAN only)

15.14.1 Receive Packet Type
0xBA

15.14.2 Request Type
0xBB

15.14.3 Volatility
All values are volatile and will change according to new conditions.

15.14.4 Function
Triggered in response to a 0xBB request packet, this packet contains information about the
actuator’s CAN bus interface. This packet is available on actuator firmware version 6.9 and later.

15.14.5 Payload Length
8

15.14.6 Payload Structure

15.14.7 Field Descriptions

15.14.7.1 Packet Type
The byte indicating the packet type: 0xBA

15.14.7.2 CAN System Status
Indicates the current status of the CAN bus interface.
Bit 0 – Error Warning: CAN TX and/or RX error levels have increased past the warning threshold
Bit 1 – Bus Error: If set, the CAN transceiver has entered Bus Off state due to an excess of CAN
transmit errors.

15.14.7.3 TX Error Count
The number of detected CAN transmit errors.

15.14.7.4 RX Error Count
The number of detected CAN receive errors.

15.14.7.5 Reserved
This field is currently unused and will not contain meaningful data.

CAN Bus Status

Payload
Index

0 1 2 3 4:7

Data Type char uint8 uint8 uint8 uint32

Field Packet Type:
0xBA

CAN system
status

TX Error Count RX Error Count Reserved

121

15.15 Modbus Passthrough Packet 0xFE

15.15.1 Receive Packet Type
0xFF

15.15.2 Request Type
0xFE

15.15.3 Volatility
All values are volatile and will change according to new conditions.

15.15.4 Function
This packet allows for Modbus packets to be sent to the actuator while the actuator is in 2G packet
mode. Since most actuator control and configuration functions can be performed using 2G packets
directly, this is primarily useful for file transfer functionality. However, future actuators may expose
new functionality over Modbus only. See the 2G actuator Modbus register documentation for more
information on available Modbus registers. This packet is available on actuator firmware version 8.4
and later.

15.15.5 Payload Length
Varies based on Modbus packet

15.15.6 Payload Structure

Modbus Passthrough (To Actuator)

Payload
Index

0 1:255 (Varies)

Data Type char uint8

Field Packet
Type: 0xFE

Modbus RTU data

Modbus Passthrough Reply (From Actuator)

Payload
Index

0 1:255 (Varies)

Data Type char uint8

Field Packet
Type: 0xFF

Modbus RTU data

122

15.15.7 Field Descriptions

15.15.7.1 Packet Type
The byte indicating the packet type: 0xFE for packets going to the actuator, 0xFF for packets
coming from the actuator.

15.15.7.2 Modbus RTU data
A complete Modbus RTU frame, beginning with the station address and ending with the 16-bit
CRC. When sending Modbus frames using the passthrough packet, the Modbus station address
must always be set to 1. If multiple actuators are present on the same bus, addressed packets
must be used for the Modbus passthrough packet, same as with any other packet in this
document.
Only one Modbus frame may be sent to the actuator per passthrough packet. Any additional data
after the first valid Modbus frame in the passthrough packet will be discarded.
The actuator will send a passthrough reply packet containing a standard Modbus RTU reply frame
for any Modbus passthrough packets sent to it. This will typically contain an acknowledgement in
the case of a write command, or the requested data in the case of a read command. A standard
Modbus error frame will be returned if the actuator was unable to parse the Modbus RTU payload
in the passthrough packet.
As the 2G packet format allows for payloads of up to 255 bytes, and the first byte of payload is
always used to identify the packet type, the maximum Modbus RTU frame length that can be sent
using the passthrough packet is 254 bytes.

123

15.16 Ethernet Status Packet 0xC0 (Actuators equipped with Ethernet only)

15.16.1 Receive Packet Type
0xC0

15.16.2 Request Type
0xC1

15.16.3 Volatility
All values are volatile and will change according to new conditions.

15.16.4 Function
Triggered in response to a 0xC1 request packet, this packet contains information about the
actuator’s Ethernet interface. If the actuator is not equipped with an Ethernet interface, this packet
will not return useful information.

15.16.5 Payload Length
35

15.16.6 Payload Structure

15.16.7 Field Descriptions

15.16.7.1 Packet Type
The byte indicating the packet type: 0xC0

15.16.7.2 Current IPv4 Address
Indicates the actuator’s currently-active IPv4 address. This may be statically assigned or obtained
via DHCP, depending on how the actuator is configured. IP addresses are represented in little
endian, so, for example, the address 192.168.1.2 would correspond to the hex value 0xC0A80102.

Ethernet Status (Table 1 of 2)

Payload
Index

0 1:4 5:8 9:12 13:16

Data Type char uint32 uint32 uint32 uint32

Field Packet Type:
0xC0

Current IPv4
Address

Current IPv4
Subnet Mask

Current IPv4
Default
Gateway

Current IPv4 DNS
Server

Ethernet Status (Table 2 of 2)

Payload
Index

17:20 21:26 27:30 31:34

Data Type uint32 uint8[6] uint32 uint32

Field Current Ethernet
Options

MAC address Ethernet Status Flags Reserved #1

124

15.16.7.3 Current IPv4 Subnet Mask
Indicates the actuator’s currently-active IPv4 subnet mask. This may be statically assigned or
obtained via DHCP, depending on how the actuator is configured. Subnet masks are represented
in little endian, so, for example, the mask 255.255.0.0 would correspond to the hex value
0xFFFF0000.

15.16.7.4 Current IPv4 Default Gateway
Indicates the actuator’s currently-active IPv4 default gateway. This may be statically assigned or
obtained via DHCP, depending on how the actuator is configured. IP addresses are represented in
little endian, so, for example, the address 192.168.1.1 would correspond to the hex value
0xC0A80101.

15.16.7.5 Current IPv4 DNS Server
Indicates the actuator’s currently-active IPv4 DNS server. This may be statically assigned or
obtained via DHCP, depending on how the actuator is configured. IP addresses are represented in
little endian, so, for example, the address 192.168.1.1 would correspond to the hex value
0xC0A80101. Note that the actuator firmware does not currently use any DNS functionality or
perform any DNS lookups. This field is provided for compatibility with future firmware only.

15.16.7.6 Current Ethernet Options
This field mirrors the Ethernet options field in the Ethernet Configuration Packet.

15.16.7.7 MAC Address
This field provides the actuator’s MAC address. The MAC address is sent in left-to-right order, so
for an example MAC address of 00:11:22:33:44:55, 0x00 would be the first byte in this field and
0x55 would be the last.

15.16.7.8 Ethernet Status Flags
This field provides information on the current state of the Ethernet connection. The following bits
are defined:
0 – Link up. If set, indicates that the actuator has established an Ethernet link. Note that this flag
only covers the Ethernet physical layer; the actuator must also be configured correctly in order for
Ethernet communications to work.
1 – DHCP active. If set, indicates that the actuator has received an IP address via DHCP.
2 – Ethernet/IP available. If set, indicates that the actuator is configured to communicate using
Ethernet/Industrial Protocol.
3 – Modbus TCP available. If set, indicates that the actuator is configured to communicate using
Modbus TCP.

15.16.7.9 Reserved #1
This field is not currently used and has no effect on actuator functionality.

125

16 Command Packets
The packet templates in this section are sent to the actuator to trigger events.

The actuator will respond to command packets with an acknowledgement packet (‘A’).

16.1 Linear Actuators – Calibrate / Configure Position Packet ‘C’

16.1.1 Send Packet Command
‘C’ (0x43)

16.1.2 Volatility
Although this command does not allow for directly setting internal system values, it does configure
internal parameters which are non-volatile. As such, the effects of this command will be lost on
power-off unless a “Save to EEPROM” packet is sent. However, the internal offsets are not affected
by a load defaults command.
The original factory values cannot be recovered once overwritten.

16.1.3 Function
This packet will calibrate the actuator’s positioning system, setting the current position to the
desired position (the position sent to the actuator in this packet). This is accomplished by
configuring internal offsets to yield the desired position. These offsets are non-volatile and will
remain permanent if a save packet is sent after the calibration takes place. The offsets cannot be set
directly, nor are they reset by a Load Defaults packet. However, they may be cleared by sending a
Clear Offsets packet.
This packet is provided as an alternative to the tare packet.

16.1.4 Payload Length
5

16.1.5 Payload Structure

16.1.6 Field Descriptions

16.1.6.1 Packet Type
The byte indicating the packet type: ‘C’ (0x43)

16.1.6.2 Calibrated Position
An offset will be calculated such that the position specified will become the actuator’s reported
position. Attempting to set negative offsets on firmware versions earlier than 4.0 (released 2016-
03-07) will cause undefined behavior.

Linear – Calibrate / Configure Position

Payload
Index

0 1:4

Data
Type

char int32

(Non-Volatile)

Field Command: ‘C’ Calibrated Position

126

16.2 Rotary Actuators – Calibrate / Configure Position Packet ‘C’

16.2.1 Send Packet Command
‘C’ (0x43)

16.2.2 Volatility
Although this command does not allow for directly setting internal system values, it does configure
internal parameters which are non-volatile. As such, the effects of this command will be lost on
power-off unless a “Save to EEPROM” packet is sent. However, the internal offsets are not affected
by a load defaults command.
The original factory values cannot be recovered once overwritten.

16.2.3 Function
This packet will calibrate the actuator’s positioning system, setting the current position to the
desired position (the position sent to the actuator in this packet). This is accomplished by
configuring internal offsets to yield the desired position. These offsets are non-volatile and will
remain permanent if a save packet is sent after the calibration takes place. The offsets cannot be set
directly, nor are they reset by a Load Defaults packet. However, they may be cleared by sending a
Clear Offsets packet.
This packet is provided as an alternative to the tare packet.

16.2.4 Payload Length
5

16.2.5 Payload Structure

16.2.6 Field Descriptions

16.2.6.1 Packet Type
The byte indicating the packet type: ‘C’ (0x43)

16.2.6.2 Calibrated Position
An offset will be calculated such that the position specified will become the actuator’s reported
position.
Valid values are 0 to 359999 millidegrees.

Rotary - Calibrate/Configure Position Command

Payload
Index

0 1:4

Data
Type

char int32

(Non-Volatile)

Field Command: ‘C’ Calibrated Position

127

16.3 Calibrate / Configure Current Packet 0xAA

16.3.1 Send Packet Command
0xAA

16.3.2 Volatility
This command configures internal parameters which are non-volatile. As such, the effects of this
command will be lost on power-off unless a “Save to EEPROM” packet is sent. However, the internal
offsets are not affected by a load defaults command.
The original factory values cannot be recovered once overwritten.

16.3.3 Function
This packet will calibrate the actuator’s current monitoring system, setting either the current
reading to the desired value by computing an offset internally, or by proving an offset directly. These
offsets are non-volatile and will remain permanent if a save packet is sent after the calibration takes
place. The offsets are not reset by a Load Defaults packet, but may be reset by sending this packet in
mode 0. Note that resetting the offset returns it to 0, not the factory value.

16.3.4 Payload Length
6

16.3.5 Payload Structure

16.3.6 Field Descriptions

16.3.6.1 Packet Type
The byte indicating the packet type: 0xAA

16.3.6.2 Offset Mode
Specifies the current offset update mode according to the following enumerated values:
0 – Reset offset: The internal current offset is reset to zero. The offset value field must also be set
to 0 for this to take effect.
1 — Set Offset: The internal current offset is set to value specified in the Offset Value field.
2 — Set Current: The internal current is calculated such that the reported current becomes the
value specified in the Offset Value field.

16.3.6.3 Offset Value
Contains the value to be used to update the current offset. The exact function of this field varies
depending on the mode specified in the “Offset Mode” field.

Rotary - Calibrate/Configure Position Command

Payload
Index

0 1 2:5

Data Type char uint8 int32

Field Command:
0xAA

Offset Mode Offset Value

128

16.4 Clear Offsets Command Packet ‘-’

16.4.1 Send Packet Command
‘-’ (0x2D)

16.4.2 Volatility
Although this command does not allow for directly setting internal system values, it does configure
internal parameters which are non-volatile. As such, the effects of this command will be lost on
power-off unless a “Save to EEPROM” packet is sent. However, the internal offsets are not affected
by a load defaults command.
The original factory values cannot be recovered once overwritten.

16.4.3 Function
Resets the internal offsets that were configured during calibrations. Note that these offsets do not
refer to relative positioning, but the offsets that were factory-calibrated for precise absolute
positioning. After receiving this packet, the actuator will report the raw position that it reads from
the position sensor.
If the update position command (0xA0) has been used since the actuator was last powered on, the
clear offsets command will also reset any position offsets set up by that command. If persistent
revolution counting is enabled, this reset will take effect immediately and will be persistent across
power cycles, even if a “Save to EEPROM” command is not issued.
It is advisable to calibrate the actuator after issuing this command, by using either a Calibrate
Position packet ‘C’ or a Tare ‘#’ packet.

16.4.4 Payload Length
1

16.4.5 Payload Structure

16.4.6 Field Descriptions

16.4.6.1 Command
Indicates the command being issued: ‘-’ (0x2D).

Clear Offsets Command

Payload Index 0

Data Type char

Field Command: ‘-’

129

16.5 In-System Programming Update Command Packet ‘~’

16.5.1 Send Packet Command
‘~’ (0x7E)

16.5.2 Volatility
This command will cause all non-volatile parameters that have changed since the last save to be lost
when the system loses power unless a “Save to EEPROM” packet is sent.
When new firmware is loaded, the system will try to recover data stored in EEPROM from the
previous firmware. This carries some risk that the data is incompatible, so saving important tuning
values or other information off-board is advisable.

16.5.3 Function
Puts the actuator microcontroller into a bootloader mode ready for In-System Programming. This
allows updating the actuator firmware with a new .hex file over serial. The 2G Actuator GUI
application or lpc21isp.exe may be used to load the hex file after the actuator receives the ISP/IAP
packet. The system will require a power cycle after successful programming, if programming is not
initiated, or if programming fails before becoming responsive again.

16.5.4 Payload Length
1

16.5.5 Payload Structure

16.5.6 Field Descriptions

16.5.6.1 Command
Indicates the command being issued: ‘~’ (0x7E).

In-System Programming Command

Payload Index 0

Data Type char

Field Command: ‘~’

130

16.6 Load Default (Factory) Configuration Command Packet ‘@’

16.6.1 Send Packet Command
‘@’ (0x40)

16.6.2 Volatility
All non-volatile system values will change to their default values upon receiving this command.

16.6.3 Function
Loads default actuator settings. In order for the default settings to persist, a save command must be
sent, otherwise the last settings that were saved will be loaded on the next power cycle. Most
settings will be set to their default value, including relative zero location (default is 0).
Loading defaults does not recover factory calibration offsets; calibration must always be done
manually.

16.6.4 Payload Length
1

16.6.5 Payload Structure

16.6.6 Field Descriptions

16.6.6.1 Command
Indicates the command being issued: ‘@’ (0x40).

Load Default Configuration Command

Payload Index 0

Data Type char

Field Command: ‘@’

131

16.7 Reset Faults Command Packet ‘!’

16.7.1 Send Packet Command
‘!’ (0x21)

16.7.2 Volatility
This command does not affect non-volatile values. However, it does clear historic faults which are
normally preserved during system resets so that debug information can be determined during an
unexpected reset. Checking historic faults may be informative before issuing this command.

16.7.3 Function
Clears all faults (present and historical) reported by the actuator. If the condition which caused the
fault has been rectified, normal actuator operation may be resumed by sending the appropriate
commands to the actuator.

16.7.4 Payload Length
1

16.7.5 Payload Structure

16.7.6 Field Descriptions

16.7.6.1 Command
Indicates the command being issued: ‘!’ (0x21).

Reset Faults Command

Payload Index 0

Data Type Char

Field Command: ‘!’

132

16.8 Rotary Actuators - Reset Rotary Counters Command Packet ‘<’

16.8.1 Send Packet Command
‘<’ (0x3C)

16.8.2 Volatility
This command does not affect non-volatile values. However, if persistent revolution counting is
enabled, the new position will be remembered across actuator resets and power cycles.

16.8.3 Function
Resets the total revolutions to 0. Unless this packet is received, the actuator will report the total
number of revolutions since the actuator was powered on. If the update position command (0xA0)
has been used since the actuator was last powered on, this command will also reset the actuator’s
reported position to its default value.

16.8.4 Payload Length
1

16.8.5 Payload Structure

16.8.6 Field Descriptions

16.8.6.1 Command
Indicates the command being issued: ‘<’ (0x3C).

Rotary – Reset Rotary Counters Command

Payload Index 0

Data Type char

Field Command: ‘<’

133

16.9 Reset System Command Packet ‘=’

16.9.1 Send Packet Command
‘=’ (0x3D)

16.9.2 Volatility
This command will cause all non-volatile parameters that have changed since the last save to be lost
when the system loses power unless a “Save to EEPROM” packet is sent.
There are a few internal variables, such as historic faults, that will maintain their values during a
reset.

16.9.3 Function
Resets the system, causing the board to reload the operating system. This command is nearly
identical to doing a power cycle.

16.9.4 Payload Length
1

16.9.5 Payload Structure

16.9.6 Field Descriptions

16.9.6.1 Command
Indicates the command being issued: ‘=’ (0x3D).

Reset System Command

Payload Index 0

Data Type char

Field Command: ‘=’

134

16.10 Reverse Direction Command Packet ‘&’

16.10.1 Send Packet Command
‘&’ (0x26)

16.10.2 Volatility
This command has no effect on non-volatile values.

16.10.3 Function
If the motor is on, reverses the direction that the motor is spinning.
In general, this command is issued when the actuator is under manual control running at a fixed
match or duty cycle.
If the control loop is currently running and seeking a setpoint, the control loop will quickly correct
this command.

16.10.4 Payload Length
1

16.10.5 Payload Structure

16.10.6 Field Descriptions

16.10.6.1 Command
Indicates the command being issued: ‘&’ (0x26).

Reverse Direction Command

Payload Index 0

Data Type char

Field Command: ‘&’

135

16.11 Save Configuration to EEPROM Command Packet ‘$’

16.11.1 Send Packet Command
‘$’ (0x24)

16.11.2 Volatility
All non-volatile system values will be saved and loaded upon the next power up after this command
is issued.

16.11.3 Function
Saves the current configuration to EEPROM. Without sending this command, configurations that are
sent to the actuator will be lost when the unit is powered down. It is recommended that any
changes in configuration are tested before sending this packet.

16.11.4 Payload Length
1

16.11.5 Payload Structure

16.11.6 Field Descriptions

16.11.6.1 Command
Indicates the command being issued: ‘$’ (0x24).

Save Configuration Command

Payload Index 0

Data Type char

Field Command: ‘$’

136

16.12 Set Duty Cycle Command Packet ‘+’

16.12.1 Send Packet Command
‘+’ (0x2B)

16.12.2 Volatility
This command has no effect on non-volatile values.

16.12.3 Function
Allows the PWM cycle to be manually configured to a duty percentage. This method allows the
control loop to be bypassed.
If the motor is on, this will take effect immediately and the motor will run at a fixed output until a
new command is received.
Command has no effect if the motor is off.
*Care should be taken if using this command on an actuator with endpoints. Because the control
loop is bypassed, mechanical damage is likely to occur if the shaft exceeds the endpoints.

16.12.4 Payload Length
2

16.12.5 Payload Structure

16.12.6 Field Descriptions

16.12.6.1 Command
Indicates the command being issued: ‘+’ (0x2B).

16.12.6.2 Duty Cycle
Specifies the duty cycle at which to operate the motor. The match value is set to the appropriate
value as a percentage of the limit (if limit is 1000, and 10% is given, match will be set to 100). If the
maximum match value is less than the limit, the duty cycle will be limited by that percentage.
Valid range: -100 to 100.
Negative values will cause reverse movement.

Set Duty Cycle Command

Payload Index 0 1

Data Type char int8

Field Command: ‘+’ Duty Cycle (%)

137

16.13 Set Match Value Command Packet ‘^’

16.13.1 Send Packet Command
‘^’ (0x5E)

16.13.2 Volatility
This command has no effect on non-volatile values.

16.13.3 Function
This packet allows for manual control of the match value. This bypasses the control loop and the
actuator will run at a fixed output until the motor is turned off or a new control packet is received.
If the motor is on, this will take effect immediately and the motor will run at a fixed output until a
new command is received.
Command has no effect if the motor is off.
*Care should be taken if using this command on an actuator with endpoints. Because the control
loop is bypassed, mechanical damage is likely to occur if the shaft exceeds the endpoints.

16.13.4 Payload Length
3

16.13.5 Payload Structure

16.13.6 Field Descriptions

16.13.6.1 Command
Indicates the command being issued: ‘^’ (0x5E).

16.13.6.2 Match Value
Sets the match value (the duty portion of the PWM cycle). The match value is limited by the
maximum match value setting.
Negative values will cause reverse movement.

Set Match Value Command

Payload Index 0 1:2

Data Type char int16

Field Command: ‘^’ Match Value

138

16.14 Tare Command Packet ‘#’

16.14.1 Send Packet Command
‘#’ (0x23)

16.14.2 Volatility
Although this command does not allow for directly setting internal system values, it does configure
internal parameters which are non-volatile. As such, the effects of this command will be lost on
power-off unless a “Save to EEPROM” packet is sent. However, the internal offsets are not affected
by a load defaults command.
The original factory values cannot be recovered once overwritten.
If persistent revolution counting is enabled, sending a tare command without also sending a “Save
to EEPROM” command may result in an unexpected position value the next time the actuator is
power cycled or reset.

16.14.3 Function
This packet provides a means of calibrating the absolute position of the actuator. Factory calibration
is performed on each actuator, so it is not advisable to perform this action unless it is needed.
When this packet is received, it reconfigures the internal offsets so that the current physical location
of the shaft is calibrated as absolute position 0.

16.14.4 Payload Length
1

16.14.5 Payload Structure

16.14.6 Field Descriptions

16.14.6.1 Command
Indicates the command being issued: ‘#’ (0x23).

Tare Command

Payload Index 0

Data Type Char

Field Command: ‘#’

139

16.15 Rotary Actuators – Update Position Packet 0xA0

16.15.1 Send Packet Command
0xA0

16.15.2 Volatility
This command has no effect on non-volatile values. The position offset will be reset when the
actuator is reset or power is lost on firmware version 5.2 and earlier, or if persistent rev counting is
disabled on firmware 5.3 or later. If persistent revolution counting is enabled, the actuator will
remember the updated position across power cycles. However, some combinations of update
settings may not be properly saved across power cycles. In particular, if total degrees and
revolution count are set separately (e.g. by using bits 0 and 3 or 1 and 4), the revolution count will
take precedence after a reset. If this is an issue for your application, you may want to consider
disabling persistent revolution counting, or resetting rotary counters before sending your desired
position.

16.15.3 Function
This packet provides a means of applying a position offset to the reported position of the actuator.
This may be useful, for example, to synchronize the reported actuator position with the state of an
external system coupled to the actuator after the actuator has been power cycled. All offsets
applied by this command may be reset by using the ‘<’ Packet. Offsets will also be reset when the
Tare or Calibrate packets are sent. Updating the position of a unit using this packet while the unit’s
motor is on and a setpoint is active will cause unpredictable behavior and is strongly discouraged.

16.15.4 Payload Length
14

16.15.5 Payload Structure

16.15.6 Field Descriptions

16.15.6.1 Command
Indicates the command being issued: 0xA0.

16.15.6.2 Update Mask
Indicates which fields to update based on bits set:
0 – Total degrees (from Total Degrees field)
1 – Revolution Counter (from Total Degrees field)
2 – Absolute Position (from Total Degrees field)
3 – Revolution Counter (from Revolution Count field)
4 – Total Degrees (from Revolution Count field)
5-7 – Reserved

Update Position Command

Payload
Index

0 1 2:5 6:9 10:13

Data
Type

Char uint8 int32 int32 int32

Field Command:
0xA0

Update Mask Revolution
Count

Total Degrees Reserved

140

Depending on bits selected, revolution counter and absolute position will be calculated and
updated based on the position offset(s) provided. If both bits 1 and 3 are set, bit 3 will take
precedence. If both bits 0 and 4 are set, bit 4 will take precedence. The absolute position, if
selected, will always be calculated based on the provided total degrees value. Some combinations
of update bits are valid, but may not make sense for most applications. For example, bit 2 should
typically be set when bit 0 is set, but not when bit 4 is set, otherwise an offset will develop
between total degrees and absolute position. The actuator will continue to function in this state,
but the difference between reported absolute position and reported total degrees may cause
confusion.

16.15.6.3 Revolution Count
Specifies the desired new value for the revolution counter. The value in this field will take
precedence over the value of revolution count calculated from the Total Degrees field if both are
selected by the respective bits in the Update Mask field. It bit 4 is selected, the value of total
degrees will be calculated from this field * 360 + the current absolute position.

16.15.6.4 Total Degrees
Specifies the desired new value for the “Total Degrees” field as reported by the actuator. This field
will be used to update the revolution counter if bit 1 is set. The remainder of this value divided by
360 degrees will be used to update the absolute position field if bit 2 is selected in the update
mask field.

16.15.6.5 Reserved
This field is not implemented and currently has no effect on actuator operation.

141

17 Example Packet #1

18 Example Packet #2

Request System Info Packet – “p” without addressing.

Byte

St
ar

t
D

el
im

it
er

 "
<”

0 1 2 En
d

 D
elim

iter “>”

Data
Type

uint8 char uint8

Field Length
1

Command
‘p’

Cyclical
Redundancy Check
on bytes 0-1.

Bytes used in CRC calculation:

Integer
Value

60 1 112 66 62

Hex 0x3c 0x01 0x70 0x42 0x3e

Packet
String:

0x3c0x010x700x420x3e

Request System Info Packet – “p” with addressing.

Byte

St
ar

t
D

el
im

it
er

 "
[”

0 1 2 3 En
d

 D
elim

iter “]”

Data
Type

uint8 uint8 char uint8

Field Address

3

Length

1

Command

‘p’

Cyclical
Redundancy Check
on bytes 0-2.

Bytes used in CRC calculation:

Integer
Value

91 3 1 112 255 93

Hex 0x5b 0x03 0x01 0x70 0xff 0x5d

Packet
String:

0x5b0x030x010x700xff0x5d

142

19 Example CRC Functions
2G’s packeting system uses an 8-bit CRC with a polynomial of x8 + x5 + x4 + 1 and an initial value of 0. Example
lookup table-based implementations of this CRC are shown below in both C and Python.

19.1 CRC Function in C
CRC Algorithm

CRC Table CRC function

const uint8_t CRC8_TABLE[] =
{
0x00,0x07,0x0E,0x09,0x1C,0x1B,0x12,0x15,0x38,0x3F,
0x36,0x31,0x24,0x23,0x2A,0x2D,0x70,0x77,0x7E,0x79,
0x6C,0x6B,0x62,0x65,0x48,0x4F,0x46,0x41,0x54,0x53,
0x5A,0x5D,0xE0,0xE7,0xEE,0xE9,0xFC,0xFB,0xF2,0xF5,
0xD8,0xDF,0xD6,0xD1,0xC4,0xC3,0xCA,0xCD,0x90,0x97,
0x9E,0x99,0x8C,0x8B,0x82,0x85,0xA8,0xAF,0xA6,0xA1,
0xB4,0xB3,0xBA,0xBD,0xC7,0xC0,0xC9,0xCE,0xDB,0xDC,
0xD5,0xD2,0xFF,0xF8,0xF1,0xF6,0xE3,0xE4,0xED,0xEA,
0xB7,0xB0,0xB9,0xBE,0xAB,0xAC,0xA5,0xA2,0x8F,0x88,
0x81,0x86,0x93,0x94,0x9D,0x9A,0x27,0x20,0x29,0x2E,
0x3B,0x3C,0x35,0x32,0x1F,0x18,0x11,0x16,0x03,0x04,
0x0D,0x0A,0x57,0x50,0x59,0x5E,0x4B,0x4C,0x45,0x42,
0x6F,0x68,0x61,0x66,0x73,0x74,0x7D,0x7A,0x89,0x8E,
0x87,0x80,0x95,0x92,0x9B,0x9C,0xB1,0xB6,0xBF,0xB8,
0xAD,0xAA,0xA3,0xA4,0xF9,0xFE,0xF7,0xF0,0xE5,0xE2,
0xEB,0xEC,0xC1,0xC6,0xCF,0xC8,0xDD,0xDA,0xD3,0xD4,
0x69,0x6E,0x67,0x60,0x75,0x72,0x7B,0x7C,0x51,0x56,
0x5F,0x58,0x4D,0x4A,0x43,0x44,0x19,0x1E,0x17,0x10,
0x05,0x02,0x0B,0x0C,0x21,0x26,0x2F,0x28,0x3D,0x3A,
0x33,0x34,0x4E,0x49,0x40,0x47,0x52,0x55,0x5C,0x5B,
0x76,0x71,0x78,0x7F,0x6A,0x6D,0x64,0x63,0x3E,0x39,
0x30,0x37,0x22,0x25,0x2C,0x2B,0x06,0x01,0x08,0x0F,
0x1A,0x1D,0x14,0x13,0xAE,0xA9,0xA0,0xA7,0xB2,0xB5,
0xBC,0xBB,0x96,0x91,0x98,0x9F,0x8A,0x8D,0x84,0x83,
0xDE,0xD9,0xD0,0xD7,0xC2,0xC5,0xCC,0xCB,0xE6,0xE1,
0xE8,0xEF,0xFA,0xFD,0xF4,0xF3
};

/* Note that the CRC needs to be
initialized to 0.
 For 2G packets, the start and end
delimiter are not included in the CRC
calculation. */

uint8_t compute_crc8(uint8_t crc,
uint8_t* buffer, uint16_t len) {
 uint16 i;

 for (i = 0; i < len; i++) {
 crc = CRC8_TABLE[crc ^ buffer[i]];
 }
 return crc;
}

143

19.2 CRC Function in Python
CRC Algorithm

CRC Table CRC function

table =

[0x00,0x07,0x0E,0x09,0x1C,0x1B,0x12,0x15,0x38,0x3F,
0x36,0x31,0x24,0x23,0x2A,0x2D,0x70,0x77,0x7E,0x79,
0x6C,0x6B,0x62,0x65,0x48,0x4F,0x46,0x41,0x54,0x53,
0x5A,0x5D,0xE0,0xE7,0xEE,0xE9,0xFC,0xFB,0xF2,0xF5,
0xD8,0xDF,0xD6,0xD1,0xC4,0xC3,0xCA,0xCD,0x90,0x97,
0x9E,0x99,0x8C,0x8B,0x82,0x85,0xA8,0xAF,0xA6,0xA1,
0xB4,0xB3,0xBA,0xBD,0xC7,0xC0,0xC9,0xCE,0xDB,0xDC,
0xD5,0xD2,0xFF,0xF8,0xF1,0xF6,0xE3,0xE4,0xED,0xEA,
0xB7,0xB0,0xB9,0xBE,0xAB,0xAC,0xA5,0xA2,0x8F,0x88,
0x81,0x86,0x93,0x94,0x9D,0x9A,0x27,0x20,0x29,0x2E,
0x3B,0x3C,0x35,0x32,0x1F,0x18,0x11,0x16,0x03,0x04,
0x0D,0x0A,0x57,0x50,0x59,0x5E,0x4B,0x4C,0x45,0x42,
0x6F,0x68,0x61,0x66,0x73,0x74,0x7D,0x7A,0x89,0x8E,
0x87,0x80,0x95,0x92,0x9B,0x9C,0xB1,0xB6,0xBF,0xB8,
0xAD,0xAA,0xA3,0xA4,0xF9,0xFE,0xF7,0xF0,0xE5,0xE2,
0xEB,0xEC,0xC1,0xC6,0xCF,0xC8,0xDD,0xDA,0xD3,0xD4,
0x69,0x6E,0x67,0x60,0x75,0x72,0x7B,0x7C,0x51,0x56,
0x5F,0x58,0x4D,0x4A,0x43,0x44,0x19,0x1E,0x17,0x10,
0x05,0x02,0x0B,0x0C,0x21,0x26,0x2F,0x28,0x3D,0x3A,
0x33,0x34,0x4E,0x49,0x40,0x47,0x52,0x55,0x5C,0x5B,
0x76,0x71,0x78,0x7F,0x6A,0x6D,0x64,0x63,0x3E,0x39,
0x30,0x37,0x22,0x25,0x2C,0x2B,0x06,0x01,0x08,0x0F,
0x1A,0x1D,0x14,0x13,0xAE,0xA9,0xA0,0xA7,0xB2,0xB5,
0xBC,0xBB,0x96,0x91,0x98,0x9F,0x8A,0x8D,0x84,0x83,
0xDE,0xD9,0xD0,0xD7,0xC2,0xC5,0xCC,0xCB,0xE6,0xE1,
0xE8,0xEF,0xFA,0xFD,0xF4,0xF3]

import struct

def compute_crc8(packet, crc
= 0):

"""compute_crc8 -
Receives a string of
characters (a packet,
such as read from a
serial buffer, or from an
assembled/packed string)
and returns the 8 bit CRC
iterated over each
unpacked byte of the
string

For 2G packets, all bytes
except start and end
delimiter must be
factored into the CRC
calculation """

 for byte in packet:

 temp =
struct.unpack('B', byte)

 crc = table[crc ^
temp[0]]

 return crc

